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PREFACE 

Since the publication in 198 1 of Simulation and the Monte Carlo Method, dramatic changes 
have taken place in the entire field of Monte Carlo simulation. This long-awaited second 
edition gives a fully updated and comprehensive account of the major topics in Monte Carlo 
simulation. 

The book is based on an undergraduate course on Monte Carlo methods given at the 
Israel Institute of Technology (Technion) and the University of Queensland for the past five 
years. It is aimed at a broad audience of students in engineering, physical and life sciences, 
statistics, computer science and mathematics, as well as anyone interested in using Monte 
Carlo simulation in his or her study or work. Our aim is to provide an accessible introduction 
to modem Monte Carlo methods, focusing on the main concepts while providing a sound 
foundation for problem solving. For this reason, most ideas are introduced and explained 
via concrete examples, algorithms, and experiments. 

Although we assume that the reader has some basic mathematical knowledge, such as 
gained from an elementary course in probability and statistics, we nevertheless review the 
basic concepts of probability, Markov processes, and convex optimization in Chapter 1. 

In a typical stochastic simulation, randomness is introduced into simulation models via 
independent uniformly distributed random variables. These random variables are then used 
as building blocks to simulate more general stochastic systems. Chapter 2 deals with the 
generation of such random numbers, random variables, and stochastic processes. 

Many real-world complex systems can be modeled as discrete-event systems. Examples 
of discrete-event systems include traffic systems, flexible manufacturing systems, computer- 
communications systems, inventory systems, production lines, coherent lifetime systems, 
PERT networks, and flow networks. The behavior of such systems is identified via a 

xiii 
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sequence of discrete events, which causes the system to change from one state to another. 
We discuss how to model such systems on a computer in Chapter 3. 

Chapter4 treats the statistical analysis of the output data from static and dynamic models. 
The main difference is that the former do not evolve in time, while the latter do. For the latter, 
we distinguish between finite-horizon and steady-state simulation. Two popular methods 
for estimating steady-state performance measures - the batch means and regenerative 
methods - are discussed as well. 

Chapter 5 deals with variance reduction techniques in Monte Carlo simulation, such 
as antithetic and common random numbers, control random variables, conditional Monte 
Carlo, stratified sampling, and importance sampling. The last is the most widely used vari- 
ance reduction technique. Using importance sampling, one can often achieve substantial 
(sometimes dramatic) variance reduction, in particular when estimating rare-event proba- 
bilities. While dealing with importance sampling we present two alternative approaches, 
called the variance minimization and cross-entropy methods. In addition, this chapter con- 
tains two new importance sampling-based methods, called the transform likelihood ratio 
method and the screening method for variance reduction. The former presents a simple, 
convenient, and unifying way of constructing efficient IS estimators, while the latter ensures 
lowering of the dimensionality of the importance sampling density. This is accomplished 
by identifying (screening out) the most important (bottleneck) parameters to be used in the 
importance sampling distribution. As a result, the accuracy of the importance sampling 
estimator increases substantially. 

We present a case study for a high-dimensional complex electric power system and show 
that without screening the importance sampling estimator, containing hundreds of likelihood 
ratio terms, would be quite unstable and thus would fail to work. In contrast, when using 
screening, one obtains an accurate low-dimensional importance sampling estimator. 

Chapter 6 gives a concise treatment of the generic Markov chain Monte Carlo (MCMC) 
method for approximately generating samples from an arbitrary distribution. We discuss the 
classic Metropolis-Hastings algorithm and the Gibbs sampler. In the former, one simulates 
a Markov chain such that its stationary distribution coincides with the target distribution, 
while in the latter, the underlying Markov chain is constructed on the basis of a sequence of 
conditional distributions. We also deal with applications of MCMC in Bayesian statistics 
and explain how MCMC is used to sample from the Boltzmann distribution for the Ising 
and Potts models, which are extensively used in statistical mechanics. Moreover, we show 
how MCMC is used in the simulated annealing method to find the global minimum of a 
multiextremal function. Finally, we show that both the Metropolis-Hastings and Gibbs 
samplers can be viewed as special cases of a general MCMC algorithm and then present 
two more modifications, namely, the slice and reversible jump samplers. 

Chapter 7 focuses on sensitivity analysis and Monte Carlo optimization of simulated 
systems. Because of their complexity, the performance evaluation of discrete-event sys- 
tems is usually studied by simulation, and it is often associated with the estimation of the 
performance function with respect to some controllable parameters. Sensitivity analysis 
is concerned with evaluating sensitivities (gradients, Hessians, etc.) of the performance 
function with respect to system parameters. It provides guidance to operational decisions 
and plays an important role in selecting system parameters that optimize the performance 
measures. Monte Carlo optimization deals with solving stochastic programs, that is, opti- 
mization problems where the objective function and some of the constraints are unknown 
and need to be obtained via simulation. We deal with sensitivity analysis and optimization 
of both static and dynamic models. We introduce the celebrated score function method 
for sensitivity analysis, and two alternative methods for Monte Carlo optimization, the so- 
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called stochastic approximation and stochastic counterpart methods. In particular, in the 
latter method, we show how, using a single simulation experiment, one can approximate 
quite accurately the true unknown optimal solution of the original deterministic program. 

Chapter 8 deals with the cross-entropy (CE) method, which was introduced by the first 
author in 1997 as an adaptive algorithm for rare-event estimation using a CE minimization 
technique. It was soon realized that the underlying ideas had a much wider range of ap- 
plication than just in rare event simulation; they could be readily adapted to tackle quite 
general combinatorial and multiextremal optimization problems, including many problems 
associated with learning algorithms and neural computation. We provide a gradual intro- 
duction to the CE method and show its elegance and versatility. In particular, we present a 
general CE algorithm for the estimation of rare-event probabilities and then slightly mod- 
ify it for solving combinatorial optimization problems. We discuss applications of the CE 
method to several combinatorial optimization problems, such as the max-cut problem and 
the traveling salesman problem, and provide supportive numerical results on its effective- 
ness. Due to its versatility, tractability, and simplicity, the CE method has great potential 
for a diverse range of new applications, for example in the fields of computational biology, 
DNA sequence alignment, graph theory, and scheduling. During the past five to six years at 
least 100 papers have been written on the theory and applications of CE. For more details, 
see the Web site www. cemethod. org; the book by R. Y. Rubinstein and D. P. Kroese, 
The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte- 
Carlo Simulation and Machine Learning (Springer, 2004); or Wikipedia under the name 
cross-entropy method. 

Finally, Chapter 9 deals with difficult counting problems, which occur frequently in 
many important problems in science, engineering, and mathematics. We show how these 
problems can be viewed as particular instances of estimation problems and thus can be 
solved efficiently via Monte Carlo techniques, such as importance sampling and MCMC. 
We also show how to resolve the “degeneracy” in the likelihood ratio, which typically 
occurs in high-dimensional counting problems, by introducing a particular modification of 
the classic MinxEnt method called parametric MinxEnt. 

A wide range of problems is provided at the end of each chapter. More difficult sections 
and problems are marked with an asterisk (*). Additional material, including a brief intro- 
duction to exponential families, a discussion on the computational complexity of stochastic 
programming problems, and sample Matlab programs, is given in the Appendix. This book 
is accompanied by a detailed solutions manual. 

REUVEN RUBINSTEIN AND DIRK KROESE 

Haija and Brisbane 

July, 2007 
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CHAPTER 1 

PRELIMINARIES 

1.1 RANDOM EXPERIMENTS 

The basic notion in probability theory is that of a random experiment: an experiment 
whose outcome cannot be determined in advance. The most fundamental example is the 
experiment where a fair coin is tossed a number of times. For simplicity suppose that the 
coin is tossed three times. The sample space, denoted 0, is the set of all possible outcomes 
of the experiment. In this case R has eight possible outcomes: 

R = (HHH, HHT, HTH, HTT,THH,THT,TTH,TTT), 

where, for example, HTH means that the first toss is heads, the second tails, and the third 
heads. 

Subsets of the sample space are called events. For example, the event A that the third 
toss is heads is 

A = {HHH, HTH,THH,TTH}. 
We say that event A occurs if the outcome of the experiment is one of the elements in A. 
Since events are sets, we can apply the usual set operations to them. For example, the event 
A U B, called the union of A and B, is the event that A or B or both occur, and the event 
A n B, called the intersection of A and B, is the event that A and B both occur. Similar 
notation holds for unions and intersections of more than two events. The event A', called 
the complement of A, is the event that A does not occur. Two events A and B that have 
no outcomes in common, that is, their intersection is empty, are called disjoint events. The 
main step is to specify the probability of each event. 

Simulation and the Monte Carlo Method, Second Edition. B y  R.Y. Rubinstein and D. P. Kroese 1 
Copyright @ 2007 John Wiley & Sons, Inc. 



2 PRELIMINARIES 

Definition 1.1.1 (Probability) AprobabilifyP is a rule that assigns a number0 6 P(A) 6 
1 to each event A, such that P(R) = 1, and such that for any sequence A1 , A2, . . . of disjoint 
events 

1 1 

Equation (1.1) is referred to as the sum rule of probability. It states that if an event can 
happen in a number of different ways, but not simultaneously, the probability of that event 
is simply the sum of the probabilities of the comprising events. 

For the fair coin toss experiment the probability of any event is easily given. Namely, 
because the coin is fair, each of the eight possible outcomes is equally likely, so that 
P({ H H H } )  = . . . = P({ TTT})  = 1/8. Since any event A is the union of the “elemen- 
tary” events { HHH}, . . . , {TTT},  the sum rule implies that 

I Al 
IRI 

P(A)  = - , 

where \ A /  denotes the number of outcomes in A and IRI = 8. More generally, if a random 
experiment has finitely many and equally likely outcomes, the probability is always of the 
form (1.2). In that case the calculation of probabilities reduces to counting. 

1.2 CONDITIONAL PROBABILITY AND INDEPENDENCE 

How do probabilities change when we know that some event B c 52 has occurred? Given 
that the outcome lies in €3, the event A will occur if and only if A f l  B occurs, and the 
relative chance of A occumng is therefore P(A n B) /P(B) .  This leads to the definition of 
the conditionalprobability of A given B: 

P(A n B )  
P(B) . 

P(A I B )  = 

For example, suppose we toss a fair coin three times. Let B be the event that the total 
number of heads is two. The conditional probability of the event A that the first toss is 
heads, given that B occurs, is (2/8)/(3/8) = 2/3. 

Rewriting (1.3) and interchanging the role of A and B gives the relation P ( A  n B )  = 
P(A) P ( B  I A).  This can be generalized easily to the product rule of probability, which 
states that for any sequence of events A l ,  A2 . . . , A,, 

P(A1 . . .  An) = P ( A i ) P ( A z  IAi )P(A3  I A i A z ) . . . P ( A ,  I A 1 . . . A n _ 1 ) ,  (1.4) 

using the abbreviation AlA2 . . ‘ Ak = Al n A2 n . . . fl A,+. 
Suppose B1, B2,. . . B, is apartition of R. That is, B1, B2,. . . , B, are disjoint and 

their union is R. Then, by the sum rule, P(A)  = c y = l  P(A n Bi) and hence, by the 
definition of conditional probability, we have the law of totalprobabilify: 

n 

P(A) = C P ( A I  B i ) P ( B i ) .  
i=l 

Combining this with the definition of conditional probability gives Bayes ’ rule: 
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Independence is of crucial importance in probability and statistics. Loosely speaking, 
it models the lack of information between events. Two events A and B are said to be 
independent if the knowledge that B has occurred does not change the probability that 
A occurs. That is, A, B independent H P(A I B )  = P(A).  Since P(A I B )  = P(A n 
B)/P( B) ,  an alternative definition of independence is 

A, B independent H P ( A  n B )  = P(A) P(B) . 

This definition covers the case where B = 0 (empty set). We can extend this definition to 
arbitrarily many events. 

Definition 1.2.1 (Independence) The events A l ,  A2, . . . , are said to be independent if for 
any k and any choice of distinct indices i l ,  . . . , ik. 

P(A,, nA,,n...nA,,)=P(A,,)P(A,,).~.P(A,,) . 

Remark 1.2.1 In most cases, independence of events is a model assumption. That is, we 
assume that there exists a P such that certain events are independent. 

EXAMPLE1.l 

We toss a biased coin n times. Let p be the probability of heads (for a fair coin 
p = 1/2). Let Ai denote the event that the i-th toss yields heads, i = 1,. . . , n. Then 
P should be such that the events A l ,  . . . , A, are independent, and P(Ai)  = p for all 
i. These two rules completely specify P. For example, the probability that the first k 
throws are heads and the last n - k are tails is 

P(A1 . . . AkAi+l . . . A:L) = P(A1) .  . . P(Ak) P(AE+l). . . P(Ak) 
= p k ( 1  - p)"-k .  

1.3 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 

Specifying a model for a random experiment via a complete description of 0 and P may 
not always be convenient or necessary. In practice we are only interested in various ob- 
servations (that is, numerical measurements) in the experiment. We incorporate these into 
our modeling process via the introduction of random variables, usually denoted by capital 
letters from the last part of the alphabet, e.g., X, X I ,  X2,. . . , Y, 2. 

EXAMPLE1.2 

We toss a biased coin n times, with p the probability of heads. Suppose we are 
interested only in the number of heads, say X. Note that X can take any of the values 
in { 0, 1, . . . , n}. The probability distribution of X is given by the binomial formula 

Namely, by Example 1.1, each elementary event { H T H  . . T }  with exactly k heads 
and n - k tails has probability pk( l  - P)"-~. and there are (i) such events. 



4 PRELIMINARIES 

f (m)  

The probability distribution of a general random variable X - identifying such proba- 
bilities as P(X = x), P(a 6 X < b),  and so on - is completely specified by the cumulative 
distribution function (cdf), defined by 

F ( x )  = P(X 6 z), z E R 

A random variable X is said to have a discrete distribution if, for some finite or countable 
set of values x1,x2,. . ., P(X = xi) > 0, i = 1 , 2 , .  . . and x i  P(X = xi) = 1. The 
function f(x) = P(X = x) is called theprobability mass function (prnf) of X - but see 
Remark 1.3.1. 

1 3  5 7 9 11  
s s s s s % I  

4 EXAMPLE1.3 

Toss two fair dice and let A4 be the largest face value showing. The pmf of A4 is 
given by 

For example, to get M = 3, either (1 ,3) ,  (2 ,3) ,  (3 ,3) ,  (3 ,2) ,  or ( 3 , l )  has to be 
thrown, each of which happens with probability 1/36. 

A random variable X is said to have a continuous distribution if there exists a positive 
function f with total integral 1, such that for all a ,  b 

b 

P(a 6 X 6 b) = f(u) du 

The function f is called the probability densityfunction (pdf) of X .  Note that in the 
continuous case the cdf is given by 

F ( x )  = P(X 6 x) = 1: f(u) d u ,  

Lx+h 
and f is the derivative of F .  We can interpret f (x)  as the probability “density” at X = z 
in the sense that 

f(.) du =: h f ( x )  . P(x < X < x+ h)  = 

Remark 1.3.1 (Probability Density) Note that we have deliberately used the same sym- 
bol, f ,  for both pmf and pdf. This is because the pmf and pdf play very similar roles and 
can, in more advanced probability theory, both be viewed as particular instances of the 
general notion of probability density. To stress this viewpoint, we will call f in both the 
discrete and continuous case the pdf or (probability) density (function). 
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1.4 SOME IMPORTANT DISTRIBUTIONS 

Tables 1.1 and 1.2 list a number of important continuous and discrete distributions. We will 
use      the notation X - f, X - F ,  or X - Dist to signify that X has a pdf f, a cdf F or a 
distribution Dist. We sometimes write fx instead o f f  to stress that the pdf refers to the 
random variable X. Note that in Table 1.1, I' is the gamma function: 

Table 1.1 Commonly used continuous distributions. 

Name Notation f (XI x E Params. 

Uniform U[Q, P] 

Normal N(p ,  0') 

Gamma Gamma(a, A) 

Exponential Exp(X) 

Beta Beta(% P )  

Weibull Weib(a, A) 

Pareto Pareto(a, A) 

x e-Ax R+ x > o  

( A x ) a - - l  e - ( x x ) "  R+ a , x > o  

ax (1 + Ax)-("+') R+ ff,x > 0 

Table 1.2 Commonly used discrete distributions. 

Name Notation f (XI X E  Params. 

Bernoulli Ber(p) p"(1 - p)'-" t0,1} O < P < l  

Binomial Bin(n,, p )  (;) P"(l -P)"-" t o , 1 , .  . .7n} 0 6 p < l ,  M 

(1 , . . . ,  n} n E {1,2 , . . .  } 1 
uniform n 
Discrete DU{ 1,.  . . , n} - 

Geometric G(p) P(1 -PI"-' (1 ,2 ,  . . . }  0 6 p <  1 

Poisson Poi( A) N X > O  
- A  A" 

e -  
X! 
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1.5 EXPECTATION 

It is often useful to consider various numerical characteristics of a random variable. One 
such quantity is the expectation, which measures the mean value of the distribution. 

Definition 1.5.1 (Expectation) Let X be a random variable with pdf f .  The expectation 
(or expected value or mean) of X, denoted by E[X] (or sometimes p),  is defined by 

C ,  z f(z) discrete case, 
s-, z f (z)  dz continuous case. VI = 00 { 

W ( X ) I  = { 

If X is a random variable, then a function of X, such as X 2  or sin(X), is again a random 
variable. Moreover, the expected value of a function of X is simply a weighted average of 
the possible values that this function can take. That is, for any real function h 

C,  h(x) f(z) discrete case, 
J-”, h(z )  f(x) dx continuous case. 

Another useful quantity is the variance, which measures the spread or dispersion of the 
distribution. 

Definition 1.5.2 (Variance) The variance of a random variable X, denoted by Var(X) (or 
sometimes a2), is defined by 

v a r ( x )  = E[(X - E[x] )~ ]  = E[x’] - (IE[x])~ . 

The square root of the variance is called the standard deviation. Table 1.3 lists the 
expectations and variances for some well-known distributions. 

Table 1.3 Expectations and variances for some well-known distributions. 

Dist. E[X] Var(X) Dist. WfI Var( X )  

Bin(n,p) n p  n p ( 1  - p )  Gamma(cr,X) - x 
Q - cr 
A2 

Poi(X) 

l-p 
P 2  

A 

The mean and the variance do not give, in general, enough information to completely 
specify the distribution of a random variable. However, they may provide useful bounds. 
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We discuss two such bounds. Suppose X can only take nonnegative values and has pdf f. 
For any z > 0, we can write 

E[X] = 1’ t f ( t )  dt  + lrn t f ( t )  d t  2 / r rn  t f ( t )  dt 

2 la zf(t) dt = xP(X 2 z) , 

from which follows the Markov inequality: if X 2 0, then for all z > 0, 

If we also know the variance of a random variable, we can give a tighter bound. Namely, 
for any random variable X with mean p and variance u2, we have 

(72 
P(lX -PI 2 z) 6 7 ’ (1.10) 

This is called the Chebyshev inequality. The proof is as follows: Let D 2  = (X - P ) ~ ;  then, 
by the Markov inequality (1.9) and the definition of the variance, 

Also, note that the event { D 2  2 z2} is equivalent to the event {IX - pl 2 z}, SO that 
(1.10) follows. 

1.6 JOINT DISTRIBUTIONS 

Often a random experiment is described by more than one random variable. The theory for 
multiple random variables is similar to that for a single random variable. 

Let XI, . . . , X, be random variables describing some random experiment. We can 
accumulate these into a random vector X = ( X I ,  . . . , X,). More generally, a collection 
{ XL, t E 9} of random variables is called a stochastic process. The set 9 is called the 
parameter set or index set of the process. It may be discrete (such as N or { 1, . . . , l o } )  
or continuous (for example, R+ = [O, m) or [l, 10)). The set of possible values for the 
stochastic process is called the state space. 

The joint distribution of X1, . . . , X, is specified by thejoint cdf 

F(z1,. . . ,z,) = P(X1 < 51,. . . , x, < 5,) 
Thejointpdff is given, in the discrete case, by f(x1, . . . , x,) = P(X1 = XI, . . . , X,, = 

z,), and in the continuous case f is such that 

P(X E 93) = j ( z l ,  . . . ,z,) dzl . . . dz, 

for any (measurable) region 33 in Rn. The marginal pdfs can be recovered from the joint 
pdf by integration or summation. For example, in the case of a continuous random vector 
(X, Y )  with joint pdf j ,  the pdf jx of X is found as 
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Suppose X and Y are both discrete or both continuous, with joint pdf f, and suppose 
fx(2) > 0. Then the conditionalpdf of Y given X = x is given by 

The corresponding conditional expectation is (in the continuous case) 

W I X  = X I  = Y f Y I X ( Y I 2 : ) & .  1 
Note that E[Y I X = 21 is a function of x, say h(z).  The corresponding random variable 
h(X) is written as E[Y 1 XI. It can be shown (see, for example, [4]) that its expectation is 
simply the expectation of Y ,  that is, 

E[E[Y I XI] = E[Y] . (1.11) 

When the conditional distribution of Y given X is identical to that of Y ,  X and Y are 
said to be independent. More precisely: 

Definition 1.6.1 (Independent Random Variables) The random variables XI,. . . , X, 
are called independent if for all events {Xi E A i )  with Ai c R, i = 1, . . . , n 

P(X1 E A l ,  . . . , X, E A,)  = P(X1 E A,) ' .  .P(X, E A,) . 

A direct consequence of the above definition for independence is that random variables 
XI, . . . , X, with joint pdf f (discrete or continuous) are independent if and only if 

f(z1,. . . I % )  = fx, ( 2 1 ) .  ' .  fx, (2,) (1.12) 

for all 21, . . . , x,, where { fxi } are the marginal pdfs. 

EXAMPLE 1.4 Bernoulli Sequence 

Consider the experiment where we flip a biased coin n times, with probability p of 
heads. We can model this experiment in the following way. For i = 1, . . . , n let X, 
be the result of the i-th toss: { X, = 1) means heads (or success), { X, = 0) means 
tails (or failure). Also, let 

P(X, = 1) = p = 1 - P(X, = O ) ,  2 = 1,2 ,  . . . , 72 . 

Finally, assume that XI, . . . , X, are independent. The sequence { X,, i = 1,2, . . .} 
is called a Bernoulli sequence or Bernoulli process with success probability p .  Let 
X = X1 + . . . + X, be the total number of successes in n trials (tosses of the coin). 
Denote by 93 the set of all binary vectors x = (x1 , . . . ,x,) such that x, = k.  
Note that 93 has (F) elements. We now have 

P(X = k )  = c P(X1 = Z l , .  . . , x, = 2,) 

c P(X1 = z1) ' .  . P(X, = 2,) = c p"1 - p y - k  

X € B  

= 
X € B  X € B  

In other words, X - Bin(n,p). Compare this with Example 1.2. 
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I 

2 

3 

4 

5 

6 

7 

8 

Remark 1.6.1 An injnite sequence X1, X2, . . . of random variables is called independent 
if for any finite choice of parameters i l , i 2 ,  . . . , in (none of them the same) the random 
variables Xi,, . . . , Xi,, are independent. Many probabilistic models involve random vari- 
ables XI ,  X2 . . . that are independent and identically distributed, abbreviated as iid. We 
will use this abbreviation throughout this book. 

Similar to the one-dimensional case, the expected value of any real-valued function h of 
XI, . . . , X, is a weighted average of all values that this function can take. Specifically, in 
the continuous case, 

E [ h ( X l , .  . . X,)] = 1 ' .  ' 1 h ( z l , .  . . z,) f ( z 1 , .  . . 2,) d a  . . . dz, 

As a direct consequence of the definitions of expectation and independence, we have 

E[a + blXl+ b2X2 + ' ' .  + bnXn] = a + b l p l +  ' ' . + bnpn (1.13) 

for any sequence of random variables XI, X z ,  . . . , X, with expectations i l l l  1-12,, . . , p,, 
where a, b l ,  b2, . . . , b, are constants. Similarly, for independent random variables one has 

E[X1X2. ' ' X,] = 1-11 1-12 . . ' p, . 

The covariance of two random variables X and Y with expectations E[X] = px and 
E[Y] = p y ,  respectively, is defined as 

COV(X, Y)  = E[(X - PXHY - PLY)] ' 

This is a measure for the amount of linear dependency between the variables. A scaled 
version of the covariance is given by the correlation coeficienl, 

var(X) = E[x'] - (IE[x])~ 

Var(aX + b) = a2Var(X) 

Cov(X, Y)  = E [ X Y ]  - E[X] IE[Y] 

COV(X1 Y )  = Cov(Y, X )  

Cov(aX + by, Z )  = aCov(X,  Z )  + bCov(Yl 2) 

Cov(X, X )  = Var(X) 

Var(X + Y )  = Var(X) + Var(Y) + 2Cov(Xl Y)  

X and Y indep. ==+ Cov(X, Y)  = 0 

where 0: = Var(X) and 06 = Var(Y). It can be shown that the correlation coefficient 
always lies between -1 and 1; see Problem 1.13. 

For easy reference, Table 1.4 lists some important properties of the variance and covari- 
ance. The proofs follow directly from the definitions of covariance and variance and the 
properties of the expectation. 

Table 1.4 Properties of variance and covariance. 
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As a consequence of properties 2 and 7, for any sequence of independent random variables 
2 X I ,  . . . , X ,  with variances a:, . . . ,on 

(1.14) 2 2  Var(a + blX1 + b2Xz + . . . + b,X,) = b: n: + . . . + b, 6, 

for any choice of constants a. and b l ,  . . . , b,. 

For random vectors, such as X = ( X I  . . . , X,)T, it is convenient to write the expecta- 
tions and covariances in vector notation. 

Definition 1.6.2 (Expectation Vector and Covariance Matrix) For any random vector 
X we define the expectation vector as the vector of expectations 

P = ( ~ 1 1 .  . ' 7  pnIT = ( ~ [ ~ 1 ] 1 . .  ~ [ x n ] ) ~  . 

The covariance matrix C is defined as the matrix whose (i, j ) - th  element is 

COV(Xi, X,)  = E[(Xi - P i ) ( X ,  - &)I 
If we define the expectation of a vector (matrix) to be the vector (matrix) of expectations, 

then we can write 
P = WI 

C = E[(X - p ) ( X  - p)T] . 
and 

Note that p and C take on the same role as p and o2 in the one-dimensional case. 

Remark 1.6.2 Note that any covariance matrix C is symmetric. In fact (see Problem 1.1 6), 
it is positive semidefinite, that is, for any (column) vector u, 

U T C U  2 0 

1.7 FUNCTIONS OF RANDOM VARIABLES 

Suppose X I , .  . . , X ,  are measurements of a random experiment. Often we are only in- 
terested in certainfunctions of the measurements rather than the individual measurements 
themselves. We give a number of examples. 

EXAMPLE 1.5 

Let X be a continuous random variable with pdf fx and let Z = aX + b, where 
a # 0. We wish to determine the pdf Jz of 2. Suppose that a > 0. We have for any 
Z 

Fz(z) = P(2 < 2) = P(X < ( Z  - b ) / a )  = Fx((z - b ) / a )  . 

Differentiating this with respect to z gives fz(z) = fx ( ( z  - b ) / a )  / a .  For a < 0 
we similarly obtain fi(z) = fx ( ( z  - b ) / a )  / ( - a )  . Thus, in general, 

1 2 - b  
fzk) = - la1 fx (--) (1.15) 
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EXAMPLE1.6 

Generalizing the previous example, suppose that Z = g ( X )  for some monotonically 
increasing function g. To find the pdf of 2 from that of X we first write 

F z ( z )  = P(Z 6 2) = P (X < g - ' ( t ) )  = Fx (g-l(z)) , 

where g-' is the inverse of g. Differentiating with respect to t now gives 

(1.16) 

For monotonically decreasing functions, &g-l(z) in the first equation needs to be 
replaced with its negative value. 

EXAMPLE 1.7 Order Statistics 

Let X I ,  . . . , X, be an iid sequence of random variables with common pdf f and cdf 
F .  In many applications one is interested in the distribution of the order statistics 
X ( 1 ) ,  Xp), . . . , X(,), where X(l) is the smallest of the { X t ,  i = 1,. . . , n}, X(2 )  is 
the second smallest, and so on. The cdf of X ( n )  follows from 

n 

P(X(,) < z) = P(X1 < 2 , .  . . , x, < 2 )  = nP(xz 6 z) = ( F ( z ) y  . 
z=1 

Similarly, 
n 

> z) = P(X1 > 5 , .  . . , x, > 2 )  = rI P(X, > z) = (1 - F ( z ) y  . 
2=1 

Moreover, because all orderings of X I ,  . . . , X, are equally likely, it follows that the 
joint pdf of the ordered sample is, on the wedge { ( X I ,  . . . , z,) : z1 < 5 2  < . . . < 
x,}, simply n! times the joint density of the unordered sample and zero elsewhere. 

1.7.1 Linear Transformations 

Let x = ( 2 1 ,  . . . , zn)T be a column vector in IW" and A an m x n matrix. The mapping 
x - z, with z = Ax,  is called a linear transformation. Now consider a random vector 
X = ( X I , .  . . , X,)T,  and let 

Z = A X .  

Then Z is a random vector in R". In principle, if we know the joint distribution of X, then 
we can derive the joint distribution of Z. Let us first see how the expectation vector and 
covariance matrix are transformed. 

Theorem 1.7.1 IfX has an expectation vector px and covariance matrix EX, then the 
expectation vector and covariance matrix of Z = A X  are given by 

Pz = APX (1.17) 

and 
Cz = A C x  A T .  (1.18) 
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Suppose that A is an invertible n x n matrix. If X has a joint density fx, what is the joint 
density fz of Z? Consider Figure 1.1. For any fixed x, let z = Ax. Hence, x = A-'z. 
Consider the n-dimensional cube C = [q, zl + h] x . . x [z,, zn + h]. Let D be the image 
of C under A - ' ,  that is, the parallelepiped of all points x such that Ax E C. Then, 

Figure 1.1 Linear transformation. 

Now recall from linear algebra (see, for example, [6]) that any matrix B linearly trans- 
forms an n-dimensional rectangle with volume V into an n-dimensional parallelepiped with 
volume V IBI, where IBI = I det(B)I. Thus, 

P(Z E C) = P(X E D )  =: h"lA-'l fx(x) = h"lAl-' fx(x) . 

Letting h go to 0, we obtain 

(1.19) 

1.7.2 General Transformations 

We can apply reasoning similar to that above to deal with general transformations x t+ g(x), 
written out: [ f) [;:p) 

X n  gn (x) 

For a fixed x, let z = g(x).  Suppose g is invertible; hence, x = g-'(z). Any infinites- 
imal n-dimensional rectangle at x with volume V is transformed into an n-dimensional 
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parallelepiped at z with volume V lJx(g)l, where Jx(g) is the matrix ofJucobi at x of the 
transformation g. that is, 

(% ". %) 

a x ,  

Now consider a random column vector Z = g(X). Let C be a small cube around z with 
volume h". Let D be the image of C under 9-l. Then, as in the linear case, 

P(Z E C) =: h" fz(z) =: h"lJz(g-l)l fx(x) . 

Hence, we have the transformation rule 

fib) = fx(9-W) IJz(g-')l, E R". (1.20) 

(Note: l&(g-')l = l/lJx(g)l.) 

Remark 1.7.1 In most coordinate transformations it is g-' that is given - that is, an 
expression for x as a function of z rather than g. 

1.8 TRANSFORMS 

Many calculations and manipulations involving probability distributions are facilitated by 
the use of transforms. Two typical examples are the probability generating function of a 
positive integer-valued random variable N ,  defined by 

03 

C ( z )  = E[zN] = C zk P(N = k )  , 121 < 1 , 
k=O 

and the Laplace transform of a positive random variable X defined, for s 2 0, by 

C,  e-sx f(z) discrete case, 
JF e-sx f(z) dz continuous case. 

L ( s )  = E[e-Sx] = { 
All transforms share an important uniqueness property: two distributions are the same 

if and only if their respective transforms are the same. 

EXAMPLE1.8 

Let A4 - Poi(,u); then its probability generating function is given by 

00 00 k 
G ( z )  = c Z k  e-P L = e-P c k!!x = e-Pe'P = e-P(l-z) , (1.21) 

k! 
k=O 

k !  
k=O 

Now let N - Poi(v) independently of M .  Then the probability generating function 
of M + N is given by 

E[*M+N] = E[*"] E [ p ]  = e-P(1-z)e-41-z) = e - ( P + w - d  , 

Thus, by the uniqueness property, M + N - Poi(p + v). 
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EXAMPLE 1.9 

The Laplace transform of X - Gamma(a, A) is given by 

00 e-(A+s)x (A  + s)" xe-1 
dx 

= (A)"L r(a) 

= 

As a special case, the Laplace transform of the Exp(A) distribution is given by A/(A + 
s). Now let X I , .  . . , X, be iid Exp(A) random variables. The Laplace transform of 
S , = X l + . . . + X , i s  

which shows that S, - Gamma(n, A). 

1.9 JOINTLY NORMAL RANDOM VARIABLES 

It is helpful to view normally distributed random variables as simple transformations of 
standard normal - that is, N ( 0 ,  1)-distributed - random variables. In particular, let 
X - N ( 0 , l ) .  Then, X has density fx given by 

Now consider the transformation 2 = p + ax. Then, by (1.13, 2 has density 

In other words, 2 N N ( p ,  g2). We can also state this as follows: if 2 N N(p, a2), then 
(2 - p ) / u  N N(0,l). This procedure is called standardization. 

We now generalize this to n dimensions. Let X I ,  . . . , X ,  be independent and standard 
normal random variables. The joint pdf of X = ( X I , .  . . , X,)T is given by 

jx(x) = ( 2 r ) - n / 2 e - f ~ T ~ ,  x E I W ~ .  (1.22) 

Consider the afine transformation (that is, a linear transformation plus a constant vector) 

Z = p + B X  (1.23) 

for some m x n matrix B.  Note that, by Theorem 1.7.1, Z has expectation vector p and 
covariance matrix C = BBT.  Any random vector of the form (1.23) is said to have a 
jointly normal or multivariate normal distribution. We write Z - N(p,  C). Suppose B is 
an invertible n. x n matrix. Then, by (1.19). the density of Y = Z - p is given by 
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We have (BI = m a n d  (B-l)TB-' = (BT)- 'B-'  = (BBT)-'  = C-l, so that 

Because Z is obtained from Y by simply adding a constant vector p, we have f z ( z )  = 
. f y ( z  - p )  and therefore 

(1.24) 

Note that this formula is very similar to the one-dimensional case. 
Conversely, given a covariance matrix C = (aij), there exists a unique lower triangular 

matrix 

( I  .25) 

such that C = BBT.  This matrix can be obtained efficiently via the Cholesky square root 
method, see Section A. 1 of the Appendix. 

1.10 LIMIT THEOREMS 

We briefly discuss two of the main results in probability: the law of large numbers and the 
central limit theorem. Both are associated with sums of independent random variables. 

Let X 1 ,  X2,  . . . be iid random variables with expectation p and variance a2. For each n 
let Sn = X 1  + . . . + X,. Since X I ,  X 2 , .  . . are iid, we have lE[S,] = nE[X1] = n p  and 
var(s,) = nVar(X1) = nu2. 

The law of large numbers states that S,/n is close to p for large n. Here is the more 
precise statement. 

Theorem 1.10.1 (Strong Law of Large Numbers) I fXl ,  . . . , X,areiidwithexpectation 
p, then 

P lim - = p  = l .  
( n - + m  sn n 1 

The central limit theorem describes the limiting distribution of S, (or S,/n), and it 
applies to both continuous and discrete random variables. Loosely, it states that the random 
sum Sn has a distribution that is approximately normal, when n is large. The more precise 
statement is given next. 

Theorem 1.10.2 (Central Limit Theorem) VX,, . . . , Xn are iid with expectation / A  and 
variance u2 < m, then for all x E R, 

6 x) = 1 
n - + w  ( a f i  

s n  - np lim P ~ 

where Q is the cdf of the standard normal distribution. 
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In other words, S, has a distribution that is approximately normal, with expectation n p  
and variance no2, To see the central limit theorem in action, consider Figure 1.2. The left 
part shows the pdfs of S1, . . . , S4 for the case where the {Xi} have a U[O, 11 distribution. 
The right part shows the same for the Exp( 1) distribution. We clearly see convergence to a 
bell-shaped curve, characteristic of the normal distribution. 

0.8 

"=I 

0.6 

Figure 1.2 
exponential distribution. 

Illustration of the central limit theorem for (left) the uniform distribution and (right) the 

A direct consequence of the central limit theorem and the fact that a Bin(n,p) random 
variable X can be viewed as the sum of n iid Ber(p) random variables, X = X1 +. . .+ X,, 
is that for large n 

P(X < k) zz P(Y 6 k) , (1.26) 

with Y - N(np, np( 1 - p)) . As a rule of thumb, this normalapproximation to the binomial 
distribution is accurate if both np and n(1 - p )  are larger than 5. 

There is also a central limit theorem for random vectors. The multidimensional version is 
as follows: Let XI,  . . . , X, be iid random vectors with expectation vector p and covariance 
matrix C. Then for large n the random vectorX1+. . .+X, has approximately a multivariate 
normal distribution with expectation vector n p  and covariance matrix nC. 

1 .I 1 POISSON PROCESSES 

The Poisson process is used to model certain kinds of arrivals or patterns. Imagine, for 
example, a telescope that can detect individual photons from a faraway galaxy. The photons 
arrive at random times 2'1, T2, . . .. Let Nt denote the number of arrivals in the time interval 
[ O , t ] ,  that is, N t  = sup{k : T k  6 t } .  Note that the number of arrivals in an interval 
I = ( a ,  b] is given by Nb - N,. We will also denote it by N ( a ,  b]. A sample path of the 
arrival counting process { N t ,  t 2 0) is given in Figure 1.3. 
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Nt 

t 

3 41 
Figure 1.3 A sample path of the arrival counting process { N t ,  t 2 0). 

For this particular arrival process, one would assume that the number of arrivals in 
an interval (a, 6) is independent of the number of arrivals in interval (c, d)  when the two 
intervals do not intersect. Such considerations lead to the following definition: 

Definition 1.11.1 (Poisson Process) An arrival counting process N = { N , }  is called a 
Poisson pmcess with rate A > 0 if 

(a) The numbers of points in nonoverlapping intervals are independent. 

(b) The number of points in interval I has a Poisson distribution with mean X x length(1). 

Combining (a) and (b) we see that the number of arrivals in any small interval ( t ,  t + h] is 
independent of the arrival process up to time t and has a Poi(Xh) distribution. In particular, 
the conditional probability that exactly one arrival occurs during the time interval ( t ,  t + h] 
is P ( N ( t ,  t + h,] = 1 I N,)  = e-Xh X h z A h. Similarly, the probability of no arrivals is 
approximately 1 - Ah for small h. In other words, X is the rate at which arrivals occur. 
Notice also that since Nt - Poi(Xt), the expected number of arrivals in [0, t ]  is At, that is, 
E[Nt] = At.  In Definition 1.1 1.1 N is seen as a random counting measure, where N ( I )  
counts the random number of arrivals in set I. 

An important relationship between Nt and Tn is 

{ N ,  2 n} = { T n  < t } .  (1.27) 

In other words, the number of arrivals in [0, t ]  is at least n if and only if the n-th arrival 
occurs at or before time t. As a consequence, we have 

n-1 

P(Tn < t )  = P(N1 2 n) = 1 - C P ( N L  = k )  
k=O 

which corresponds exactly to the cdf of the Gamrna(n, A) distribution; see Problem 1.17. 
Thus, 

T,, - Gamma(n, A). (1.28) 
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Hence, each T, has the same distribution as the sum of n independent Exp(X)-distributed 
random variables. This corresponds with the second important characterization of a Poisson 
process: 

A n  arrival counting process { Nt } is a Poisson process with rate X ifand only if the 
interarrival times A1 = T I ,  A2 = T2 -Ti, . . . are independent and Exp (A)-distributed 
random variables. 

Poisson and Bernoulli processes are akin, and much can be learned about Poisson pro- 
cesses via the following Bernoulliapproximation. Let N = { N,} be a Poisson process with 
parameter A. We divide the time axis into small time intervals [0, h) ,  [h, 2h), . . . and count 
how many arrivals occur in each interval. Note that the number of arrivals in any small time 
interval of length 11 is, with high probability, either 1 (with probability X he-xh  = Ah) or 0 
(with probability e-' /I zz 1 - Ah), Next, define X = { X,} to be a Bernoulli process with 
success parameter p = A h. Put Yo = 0 and let Y,, = X I  + . . . + X,, be the total number of 
successes in n trials. Y = { Y,,} is called the Bernoulli approximation to N .  We can view 
N as a limiting case of Y as we decrease h. 

As an example of the usefulness of this interpretation, we now demonstrate that the Pois- 
son property (b) in Definition 1.1 1.1 follows basically from the independence assumption 
(a). For small h, Nt should have approximately the same distribution as Y,, where n is the 
integer part of t / h  (we write n = Lt/hJ). Hence, 

P(Nt = k )  N P(Yn = k )  

= (;) ( X h ) k ( l  - ( X h ) ) " - k  

N (;) ( X t / n ) k ( l  - ( X t / n ) ) n - k  

(1.29) 

Equation (1.29) follows from the Poisson approximation to the binomial distribution; see 
Problem 1.22. 

Another application of the Bernoulli approximation is the following. For the Bernoulli 
process, given that the total number of successes is k ,  the positions of the k successes are 
uniformly distributed over points 1,. . . , n. The corresponding property for the Poisson 
process N is that given Nt = n, the arrival times 7'1,. . . , T,, are distributed according to 
the order statistics X(l) , . . . , X(,,), where XI, . . . , X, are iid U [0, t ] .  

1.12 MARKOV PROCESSES 

Markov processes are stochastic processes whose futures are conditionally independent of 
their pasts given their present values. More formally, a stochastic process { X t ,  t E 9}, 
with 9 C R, is called a Markovprocess if, for every s > 0 and t ,  

( X t + S  I x u ,  u < t )  - (&+s I X t )  . (1.30) 

In other words, the conditional distribution of the future variable X t f s ,  given the entire past 
of the process { X u ,  u < t } ,  is the same as the conditional distribution of Xt+s  given only 
the present X t .  That is, in order to predict future states, we only need to know the present 
one. Property (1.30) is called the Markovproperfy. 
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Depending on the index set 9 and state space 6 (the set of all values the { X,} can take), 
Markov processes come in many different forms. A Markov process with a discrete index 
set is called a Markov chain. A Markov process with a discrete state space and a continuous 
index set (such as R or R+) is called a Markovjumpprocess. 

1.12.1 Markov Chains 

Consider a Markov chain X = { X t ,  t E N} with a discrete (that is, countable) state space 
8. In this case the Markov property (1.30) is: 

P(Xt+l = ~ t + l  I Xo = 50,. . . , X, = X t )  = P(Xt+l = ~ t + l  I Xt = ~ t )  (1.31) 

for all 50,  . . . , 
conditional probability 

E 6 and 1 E N. We restrict ourselves to Markov chains for which the 

P(Xt+l = j I Xt  = i), i, j E d (1.32) 

is independent of the time t .  Such chains are called time-homogeneous. The probabilities 
in (1.32) are called the (one-step) transition probabilities of X .  The distribution of X O  is 
called the initial distribution of the Markov chain. The one-step transition probabilities and 
the initial distribution completely specify the distribution of X. Namely, we have by the 
product rule (1.4) and the Markov property (1.30) 

P(X0 = zo,. . . , Xt = Zt) 
= P(X0 = 50) P(X1 = 51 I Xo = 20). ’ .P(Xt = Zt I xo = zo, . . . xt-1 = 21-1) 

= P(X0 = 20) P(X1 = 51 I Xo = 50) ’ .  .P(Xt = Zt I x,-1 = X t - 1 )  . 

Since 8 is countable, we can arrange the one-step transition probabilities in an array. 
This array is called the (one-step) transition matrix of X .  We usually denote it by P. For 
example, when 8 = { 0 , 1 , 2 , .  . .} the transition matrix P has the form 

PO0 PO1 PO2 ’ ” p=k!.  ”: ”:’ ;i*j 
Note that the elements in every row are positive and sum up to unity. 

Another convenient way to describe a Markov chain X is through its transition graph. 
States are indicated by the nodes of the graph, and a strictly positive (> 0) transition 
probability pi ,  from state i to j is indicated by an arrow from z to j with weight p i j .  

EXAMPLE 1.10 Random Walk on the Integers 

Let p be a number between 0 and 1. The Markov chain X with state space Z and 
transition matrix P defined by 

P(i ,  i + 1) = p ,  P(i ,  i - 1) = q = 1 - p ,  for all i E Z 

is called a random walk on the integers. Let X start at 0; thus, P(X0 = 0) = 1. The 
corresponding transition graph is given in Figure 1.4. Starting at 0, the chain takes 
subsequent steps to the right with probability p and to the left with probability q. 
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Figure 1.4 Transition graph for a random walk on Z. 

We shall show next how to calculate the probability that, starting from state i at some 
(discrete) time t ,  we are in j at (discrete) time t + s, that is, the probability P(Xt+s = 
j I X t  = i). For clarity, let us assume that d = { 1 , 2 ,  . . . , m} for some fixed m, so that P 
is an m x m matrix. For t = 0, 1 , 2 ,  . . ., define the row vector 

7dt) = (P(Xt = l ) ,  . . . , P(Xt = m))  

We call dt) the distribution vector, or simply the distribution, of X at time t and ?r(') the 
initial distribution of X. The following result shows that the t-step probabilities can be 
found simply by matrix multiplication. 

Theorem 1.12.1 The distribution o f X  at time t is given by 

, ( t )  = &)pt (1.33) 

for all t = 0,1,  . . .. (Here Po denotes the identity matrix.) 

Proof The proof is by induction. Equality (1.33) holds for t = 0 by definition. Suppose 
it is true for some t = 0,1, . . .. We have 

m 

P(Xt+l = k )  = C P ( X t + l  = k I Xt = 2)  P(Xt = i) . 
i= 1 

But (1.33) is assumed to be true fort, s o P ( X t  = z )  is the i-th element of ?r(0)Pt. Moreover, 
P(Xt+l = k I Xt = i )  is the (i, k)-th element of P. Therefore, for every k 

m m 

C P ( X t + l  = k I xt = i) P(Xt = i )  = c P(i ,  k) (?r (O)Pt ) ( i )  , 
i=l i=l 

which is just the k-th element of d 0 ) P t + ' .  This completes the induction step, and thus the 
theorem is proved. 0 

By taking do) as the i-th unit vector, ef, the t-step transition probabilities can be found 
as P(Xt = j I X O  = i) = (ei P t ) ( j )  = P t ( i , j ) ,  which is the ( i , j ) - th  element of matrix 
Pt.  Thus, to find the t-step transition probabilities, we just have to compute the t-th power 
of P. 

1.12.2 Classification of States 

Let X be a Markov chain with discrete state space d and transition matrix P. We can 
characterize the relations between states in the following way: If states z and j are such that 
P t ( i , j )  > 0 for some t 2 0, we say that i leads to j and write i -+ j. We say that i and j 
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communicate if i -+ j and j -+ i, and write i t-) j .  Using the relation “++” we can divide 
8 into equivalence classes such that all the states in an equivalence class communicate 
with each other but not with any state outside that class. If there is only one equivalent 
class (= 8), the Markov chain is said to be irreducible. If a set of states d is such that xjEd P(i ,  j )  = 1 for all i E d, then d is called a closed set. A state i is called an 
absorbing state if { i} is closed. For example, in the transition graph depicted in Figure 1 S, 
the equivalence classes are { 1,2}, {3}, and {4,5} .  Class { 1,2} is the only closed set: the 
Markov chain cannot escape from it. If state 1 were missing, state 2 would be absorbing. 
In Example 1.10 the Markov chain is irreducible since all states communicate. 

Figure 1.5 A transition graph with three equivalence classes. 

Another classification of states is obtained by observing the system from a local point 
of view. In particular, let T denote the time the chain first visits state j, or first returns to 
j if it started there, and let N ,  denote the total number of visits to j from time 0 on. We 
write Pj(A) for P(A I Xo = j )  for any event A.  We denote the corresponding expectation 
operator by E,. State j is called a recurrent state if Pj (T < co) = 1; otherwise, j is called 
transient. A recurrent state is calledpositive recurrent if Ej [TI < 00; otherwise, it is called 
null recurrent. Finally, a state is said to be periodic, with period 6 ,  if b 2 2 is the largest 
integer for which P,(T = n6 for some n 2 1) = 1; otherwise, it is called aperiodic. For 
example, in Figure 1.5 states 1 and 2 are recurrent, and the other states are transient. All 
these states are aperiodic. The states of the random walk of Example 1 .I0 are periodic with 
period 2.  

It can be shown that recurrence and transience are class properties. In particular, if i ++ j ,  
then i recurrent (transient) w j recurrent (transient). Thus, in an irreducible Markov chain, 
one state being recurrent implies that all other states are also recurrent. And if one state is 
transient, then so are all the others. 

1.12.3 Limiting Behavior 

The limiting or “steady-state” behavior of Markov chains as t -+ 00 is of considerable 
interest and importance, and is often simpler to describe and analyze than the “transient” 
behavior of the chain for fixed t .  It can be shown (see, for example, [4]) that in an irreducible, 
aperiodic Markov chain with transition matrix P the t-step probabilities converge to a 
constant that does not depend on the initial state. More specifically, 

( I  .34) 

for some number 0 < rj < 1. Moreover, T, > 0 if j is positive recurrent and ~j = 0 
otherwise. The intuitive reason behind this result is that the process “forgets” where it 
was initially if i t  goes on long enough. This is true for both finite and countably infinite 
Markov chains. The numbers { 7 r j , j  E 8} form the limiting distribution of the Markov 
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chain, provided that n, 2 0 and n = 1. Note that these conditions are not always 
5 . 3  

satisfied: they are clearly not satisfied If the Markov chain is transient, and they may not be 
satisfied if the Markov chain is recurrent (namely when the states are null-recurrent). The 
following theorem gives a method for obtaining limiting distributions. Here we assume for 
simplicity that d = {0,1,2,  . . .}. The limiting distribution is identified with the row vector 
x = (TO,TI,. . .). 

Theorem 1.12.2 For an irreducible, aperiodic Murkov chain with transition matrix P, if 
the limiting distribution 7~ exists, then it is uniquely determined by the solution of 

I F = I F P ,  (1.35) 

with n, >, 0 and C, xj = 1. Conversely, i f  there exists a positive row vector x satisfy- 
ing (1.35) and summing up to I ,  then T is the limiting distribution of the Markov chain. 
Moreover; in that cuse nJ > 0 for  all j ,  and all states are positive recurrent. 

Proof: 
(1.33). Namely, with IF(') being the i-th unit vector, we have 

(Sketch). For the case where d is finite, the result is simply a consequence of 

P t+ ' ( i , j )  = ( T ( 0 )  Pt P) (j) = c P"(i ,k)P(k, j )  . 
kEC 

Letting t -+ m, we obtain (1.35) from (1.34), provided that we can change the order of the 
limit and the summation. To show uniqueness, suppose that another vector y, with yJ 2 0 
and c, y, = 1, satisfies y = y P .  Then it is easy to show by induction that y = y P t ,  for 
every 2. Hence, letting t ---t 03, we obtain for every j 

YJ = CYt% = TJ 1 

a 

since the {yJ} sum up to unity. We omit the proof of the converse statement. 0 

EXAMPLE 1.11 Random Walk on the Positive Integers 

This is a slightly different random walk than the one in Example 1 .lo. Let X be a 
random walk on 8 = {0,1 ,2 , .  . .} with transition matrix 

q I-, 0 . . .  

P =  
. .  . . . .  . * . . . .  

where 0 < p < 1 and q = 1 - p .  Xt could represent, for example, the number of 
customers who are waiting in a queue at time t .  

All states can be reached from each other, so the chain is irreducible and every 
state is either recurrent or transient. The equation IF = TP becomes 
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and so on. We can solve this set of equation sequentially. If we let r = p / q ,  then we 
can express the 7r1, “2, . . . in terms of and r as 

n j=r jno ,  j = o l 1 , 2 ,  . . .  

If p < q, then r < 1 and nj = no/( 1 - r ) ,  and by choosing no = 1 - ‘r, we can 
make the sum nj = 1. Hence, for r < 1 we have found the limiting distribution 
T = (1 - r )  (1, r,  r2 ,  r3 ,  . . .) for this Markov chain, and all the states are therefore 
positive recurrent. On the other hand, when p 2 q, C nj is either 0 or infinite, and 
hence all states are either null-recurrent or transient. (It can be shown that only the 
case p = q leads to null-recurrent states.) 
Let X be a Markov chain with limiting distribution 7r. Suppose 7r(’) = T. Then, 

combining (1.33) and (1.35), we have T(,) = T .  Thus, if the initial distribution of the 
Markov chain is equal to the limiting distribution, then the distribution of X t  is the same 
for all t (and is given by this limiting distribution). In fact, it is not difficult to show that for 
any k the distribution of xk, Xk+l ,  X k + 2 . .  . is the same as that of X O ,  X I , .  . .. In other 
words, when do) = 7r, the Markov chain is a stationary stochastic process. More formally, 
a stochastic process {Xt, t E N} is called stationary if, for any positive 7, t l ,  . . . , t,,, the 
vector ( X t l ,  . . . , Xtn) has the same distribution as ( X t l + r ,  . . . , X t n + r ) .  Similar definitions 
hold when the index set is Z, R+ or R. For this reason, any distribution T for which (1.35) 
holds is called a stationary distribution. 

Noting that C j  pi j  = 1, we can rewrite (1.35) as the system of equations 

C nip,,  = C nj  p j i  for all i E 8 . (1.36) 
3 3 

These are called the global balance equations. We can interpret (1.35) as the statement that 
the “probability flux” out of i is balanced by the probability flux into i. An important gener- 
alization, which follows directly from (1.36), states that the same balancing of probability 
fluxes holds for an arbitrary set a“. That is, for every set a” of states we have 

c =1 Pz, = c c n3 P3r . (1.37) 
l E d , # d  l E d j 4 . d  

1.12.4 Reversibility 

Reversibility is an important notion in the theory of Markov and more general processes. A 
stationary stochastic process { X , }  with index set Z or R is said to be reversible if, for any 
positive integer n and for all t l ,  . . . , t,, the vector ( X t l  . . . , X t n )  has the same distribution 
as ( X - t l , .  . . , X P t n ) .  One way to visualize this is to imagine that we have taken a video 
of the stochastic process, which we may run in forward and reverse time. If we cannot 
determine whether the video is running forward or backward, the process is reversible. The 
main result for reversible Markov chains is that a stationary Markov process is reversible if 
and only if there exists a collection of positive numbers { nir i E 8)  summing to unity that 
satisfy the detailed (or local) balance equations 

ni pi j  = nj pji , i ,  j E 8. (1.38) 

Whenever such a collection {nj} exists, it is the stationary distribution of the process. 
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A good way to think of the detailed balance equations is that they balance the probability 
flux from state i to state j with that from state j to state i. Contrast this with the equilibrium 
equations (1.36), which balance the probability flux out of state i with that into state z. 

Kolmogorov’s criterion is a simple criterion for reversibility based on the transition 
probabilities. It states that a stationary Markov process is reversible if and only if its 
transition rates satisfy 

~(il>i~)p(i2ri3), . .p(G-l1Zn)p(inlil) =p(i1,in)p(inlZn-1). . . P ( ~ z , ~ I )  (1.39) 

for all finite loops of states i l ,  . . . , in, 21. (For clarity, we have used the notation p(i,j) 
rather than p i j  for the transition probabilities.) The idea is quite intuitive: if the process 
in forward time is more likely to traverse a certain closed loop in one direction than in the 
opposite direction, then in backward time it will exhibit the opposite behavior, and hence 
we have a criterion for detecting the direction of time. If such “looping” behavior does not 
occur, the process must be reversible. 

1.12.5 Markov Jump Processes 

A Markov jump process X = { X t ,  t 2 0 )  can be viewed as a continuous-time general- 
ization of a Markov chain and also of a Poisson process. The Markov property (1.30) now 
reads 

P(Xt+,  = Zt+s I x u  = Zulu < t )  = P(Xt+S = Z t + s  I xt = .t) ’ (1.40) 

As in the Markov chain case, one usually assumes that the process is time-homogeneous, 
that is, P(X,+, = j 1 X t  = i) does not depend on t. Denote this probability by Ps(i, j ) .  
An important quantity is the transition rate 9iJ from state i to j ,  defined for i # j as 

The sum of the rates out of state 1: is denoted by qi .  A typical sample path of X is shown in 
Figure 1.6. The process jumps at times TI Tz, . . . to states Y1, Y2, . . ., staying some length 
of time in each state. 

Figure 1.6 A sample path of a Markov jump process { X t ,  t 2 0). 
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More precisely, a Markov jump process X behaves (under suitable regularity conditions; 
see [4]) as follows: 

1. Given its past, the probability that X jumps from its current state i to state j is 
K,j = qij lqi .  

2 .  The amount of time that X spends in state j has an exponential distribution with 
mean l / q J ,  independent of its past history. 

The first statement implies that the process {Y,} is in fact a Markov chain, with transition 
matrix K = ( K t 3 ) .  

A convenient way to describe a Markov jump process is through its transition rategraph. 
This is similar to a transition graph for Markov chains. The states are represented by the 
nodes of the graph, and a transition rate from state i to j is indicated by an arrow from i to 
j with weight q t j .  

W EXAMPLE 1.12 Birth and Death Process 

A birth anddeathprocess is a Markov jump process with a transition rate graph of the 
form given in Figure 1.7. Imagine that X t  represents the total number of individuals 
in a population at time t .  Jumps to the right correspond to births, and jumps to the 
left to deaths. The birth rates { bi} and the death rates { d i }  may differ from state 
to state. Many applications of Markov chains involve processes of this kind. Note 

Figure 1.7 The transition rate graph of a birth and death process. 

that the process jumps from one state to the next according to a Markov chain with 
transition probabilities KO,J = 1, K,,,+J = b,/(b,  + d,), and K,,,-J = d , / (b ,  + d,), 
i = 1 , 2 ,  . . .. Moreover, it spends an Exp(b0) amount of time in state 0 and Exp(b,+d,) 
in the other states. 

Limiting Behavior We now formulate the continuous-time analogues of (1.34) and 
Theorem 1.12.2. Irreducibility and recurrence for Markov jump processes are defined in 
the same way as for Markov chains. For simplicity, we assume that d = { 1 , 2 , .  . .}. If X 
is a recurrent and irreducible Markov jump process, then irrespective of i, 

lim P(Xt = j l X o  = i) = 7rj (1.41) 
t-+w 

for some number 7 r j  2 0. Moreover, 7~ = ( T I ,  7r2, . . .) is the solution to 

(1.42) 
j # i  j # i  

with cj ~j = 1, if such a solution exists, in which case all states are positive recurrent. If 
such a solution does not exist, all 7rj are 0. 
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As in the Markov chain case, {T,} is called the limiting distribution of X and is usually 
identified with the row vector 7r. Any solution 7r of (1.42) with c, 7rj = 1 is called a 
stationary distribution, since taking it as the initial distribution of the Markov jump process 
renders the process stationary. 

The equations (1.42) are again called the global balance equations and are readily gen- 
eralized to (1.37), replacing the transition probabilities with transition rates. More impor- 
tantly, if the process is reversible, then, as with Markov chains, the stationary distribution 
can be found from the local balance equations: 

s i q i j = T 3 q J i ,  i , j € c f ? .  (1.43) 

Reversibility can be easily verified by checking that looping does not occur, that is, via 
Kolmogorov’s criterion (1.39), replacing the probabilities p with rates q. 

EXAMPLE 1.13 M / M / l  Queue 

Consider a service facility where customers arrive at certain random times and are 
served by a single server. Amving customers who find the server busy wait in the 
queue. Customers are served in the order in which they arrive. The interarrival times 
are exponential random variables with rates A, and the service times of customers 
are iid exponential random variables with rates p. Finally, the service times are 
independent of the interarrival times. Let X t  be the number of customers in the 
system at time t .  By the memoryless property of the exponential distribution (see 
Problem 1.7), it is not difficult to see that X = { X t ,  t 2 0 )  is a Markov jump process, 
and in fact a birth and death process with birth rates bi = A, i = 0,1,2, .  . . and death 
rates di  = p, i = 1 , 2 , .  . .. 

Solving the global balance equations (or, more easily, the local balance equations, 
since X is reversible), we see that X has a limiting distribution given by 

lim P(Xt = n) = (1 - Q) en, n = 0,1,2, .  . . , (1.44) 
t-w 

provided that Q = A/p < 1. This means that the expected service time needs to 
be less than the expected interarrival time for a limiting distribution to exist. In that 
case, the limiting distribution is also the stationary distribution. In particular, if Xo 
is distributed according to (1.44), then Xt has the same distribution for all t > 0. 

1.13 EFFICIENCY OF ESTIMATORS 

In this book we will frequently use 

l N  e =  -Czi , 
i=l 

N 
(1.45) 

which presents an unbiased estimator of the unknown quantity ! = E[q = E[Z], where 
Z1, . . . , ZN are independent replications of some random variable Z. 

By the central limit theorem, Fhas approximately a N(!, N-lVar(Z)) distribution for 
large N. We shall estimate Var(2) via the sample variance 

N 

s 2 1  =- C(Zi - z j2  . 
i=l  

N - 1  
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By the law of large numbers, S2 converges with probability 1 to Var(2). Consequently, for 
Var( 2)  < 00 and large N ,  the approximate (1 - a )  confidence interval for e is given by 

where z1-a/2 is the (1 - a/2) quantile of the standard normal distribution. For example, 
for a = 0.05 we have ~ ~ - ~ / 2  = 20,975 = 1.96. The quantity 

s/ fi 
F 

.. 
is often used in the simulation literature as an accuracy measure for the estimator e.  For 
large N it converges to the relative error of defined as 

The sauare of the relative error 

(1.46) 

(1.47) 

is called the squared coeficienr of variation. 

EXAMPLE 1.14 Estimation of Rare-Event Probabilities 

Consider estimation of the tail probability e = P(X 2 y) of some random variable 
X for a large number y. If e is very small, then the event { X 2 y} is called a rare 
event and the probability P(X 2 y )  is called a rare-eventprobabilif. 

We may attempt to estimate C via (1.45) as 

(1.48) 

which involves drawing a random sample X1, . . . , X N  from the pdf of X and defining 
the indicators 2, = J { x , 2 y ) ,  i = 1 , .  . . , N . The estimator d thus defined is called 
the crude Monte Carlo (CMC) estimator. For small e the relative error of the CMC 
estimator is given by 

(1.49) 

As a numerical example, suppose that e = 
with relative error (say) K = 0.01, we need to choose a sample size 

In order to estimate C accurately 

This shows that estimating small probabilities via CMC estimators is computationally 
meaningless. 
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1.13.1 Complexity 

T      he theoretical framework in which one typically examines rare-event probability estima- 
tion is based on complexity theory, as introduced in [ l ,  121. In particular, the estimators 
are classified either aspoly_nornial-tirne or as exponential-time. It is shown in [ l ,  151 that 
for an arbitrary estimator, t of t, to be polynomial-time as a function of some y. it suffices 
that its squared coefficient of variation, n’, or its relative error, n, is bounded in y by some 
polynomial function, p ( y ) .  For such polynomial-time estimators, the required sample size 
to achieve a fixed relative error does not grow too fast as the event becomes rarer. 

Consider the estimator (1.48) and assume that f2 becomes very small as y -+ oc). Note 
that 

Hence, the best one can hope for with such an estimator is that its second moment of 2’ 
decreases proportionally to t2 as y -+ 00. We say that the rare-event estimator (1.48) has 
bounded relative error if for all y 

E[z~]  G ce2 (1 SO) 

for some fixed c 2 1. Because bounded relative error is not always easy to achieve, the 
following weaker criterion is often used. We say that the estimator (1.48) is logarithmically 
eflcient (sometimes called asymptotically optimal) if 

lE[22] 2 (lE[Z])’ = f2’. 

- 1 .  lim ~ - 
y-m In t 2  

In E[Z2] 
(1.51) 

H EXAMPLE 1.15 The CMC Estimator Is Not Logarithmically Efficient 

Consider the CMC estimator (1.48). We have 

E[22] = E[Z] = e , 

so that 
lim InE[Z2] In[ 1 

y-m I n P ( y )  In@ 2 ’ 

Hence, the CMC estimator is not logarithmically efficient, and therefore alternative 
estimators must be found to estimate small t. 

- - 

1 . I4 INFORMATION 

In this section we discuss briefly various measures of information in a random experi- 
ment. Suppose we describe the measurements in a random experiment via a random vector 
X = (XI, . . . , X,) with pdf f. Then all the information about the experiment (all of our 
probabilistic knowledge) is obviously contained in the pdf f. However, in most cases we 
wish to characterize our information about the experiments with just a few key numbers, 
such as the expectation and the covariance matrix of X, which provide information about 
the mean measurements and the variability of the measurements, respectively. Another 
informational measure comes from coding and communications theory, where the Shannon 
entropy characterizes the average number of bits needed to transmit a message X over a 
(binary) communication channel. Yet another approach to information can be found in 
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statistics. Specifically, in the theory of point estimation, the pdf f depends on a parameter 
vector 8. The question is how well 8 can be estimated via an outcome of X - in other 
words, how much information about 8 is contained in the “data” X. Various measures for 
this type of information are associated with the maximum likelihood, the score, and the 
(Fisher) information matrix. Finally, the amount of information in a random experiment 
can often be quantified via a distance concept, such as the Kullback-Leibler “distance” 
(divergence), also called the cross-entropy. 

1.14.1 Shannon Entropy 

One of the most celebrated measures of uncertainty in information theory is the Shannon 
entropy, or simply entropy. A good reference is [5], where the entropy of a discrete random 
variable X with density f is defined as 

Here X is interpreted as a random character from an alphabet %, such that X = s with 
probability f(z).  We will use the convention 0 In0 = 0. 

It can be shown that the most efficient way to transmit characters sampled from f over a 
binary channel is to encode them such that the number of bits required to transmit z is equal 
to log2(l / f (z)) .  It follows that - f(z) log, f(z) is the expected bit length required 
to send a random character X - f; see [5]. 

A more general approach, which includes continuous random variables, is to define the 
entropy of a random variable X with density f by 

(1.52) - C f (z)  In f(s) 
- f(z) In f(z) ds continuous case. 

discrete case, 
X ( X )  = -iE[lnf(X)] = 

Definition ( 1  S 2 )  can easily be extended to random vectors X as (in the continuous case) 

X(X) = -E[ln f (X)]  = - f(x) In f(x) dx . (1.53) J 
Often X(X) is called the joint entropy of the random variables X I ,  . . . , X,, and is also 
written as % ( X I , .  . . , X,,). In the continuous case, X(X) is frequently referred to as the 
d@erential entropy to distinguish it from the discrete case. 

EXAMPLE 1.16 

Let X have a Ber(p) distribution for some 0 < p < 1. The density f of X is given 
by f(1) = P(X = 1) = p and f(0) = P(X = 0 )  = 1 - p ,  so that the entropy of X 
is 

X(X) = - p  1np - (1 - p )  ln(1 - p )  . 

The graph of the entropy as a function of p is depicted in Figure 1.8. Note that the 
entropy is maximal for p = 1/2, which gives the “uniform” density on (0 , l ) .  
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Figure 1.8 The entropy for the Ber(p) distribution as a function of p.  

Next, consider a sequence X1, . . . , X, of iid Ber(p) random variables. Let X = 
(X,, . . . , Xn). The density of X, say g, is simply the product of the densities of the 
X i ,  so that 

L i=l J i = l  

The properties of X(X) in the continuous case are somewhat different from those in the 

1. The differential entropy can be negative, whereas the discrete entropy is always 

discrete one. In particular: 

positive. 

2. The discrete entropy is insensitive to invertible transformations, whereas the differ- 
ential entropy is not. Specifically, if X is discrete, Y = g(X), and g is an invertible 
mapping, then X(X) = %(Y), because fy(y) = fx(g-'(y)). However, in the 
continuous case, we have an additional factor due to the Jacobian of the transforma- 
tion. 

It is not difficult to see that of any density f, the one that gives the maximum entropy is 
the uniform density on %. That is, 

1 
X(X) is maximal H f(x) = - (constant). (1.54) 

For two random vectors X and Y with joint pdf f ,  we define the conditional entropy of 

1x1 

Y given X as 

where fx is the pdf of X and 
It follows that 

is the conditional density of Y (at y). given X = x. 

X(X,Y) = X(X) + K(Y I X) = X(Y) + X(X 1 Y )  . (1.56) 
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It is reasonable to impose that any sensible additive measure describing the average 
amount of uncertainty should satisfy at least (1.56) and (1 S4). It follows that the uniform 
density cames the least amount of information, and the entropy (average amount of uncer- 
tainty) of (X, Y) is equal to the sum of the entropy of X and the amount of entropy in Y 
after the information in X has been accounted for. It is argued in [ 1 11 that any concept of 
entropy that includes the general properties (1  S4) and (1 S 6 )  must lead to the definition 
(1 S 3 ) .  

The mutual information of X and Y is defined as 

M(X, Y) = X(X) + X(Y) - X(X, Y) , (1.57) 

which, as the name suggests, can be interpreted as the amount of information shared by X 
and Y. An alternative expression, which folIows from (1.56) and (1.57), is 

M(X,Y) = X(X) - q x  I Y) = 3qY) - X(Y I X) , (1.58) 

which can be interpreted as the reduction of the uncertainty of one random variable due to 
the knowledge of the other. It is not difficult to show that the mutual information is always 
positive. It is also related to the cross-entropy concept, which follows. 

1.14.2 Kullback-Leibler Cross-Entropy 

Let g and h be two densities on X. The Kullback-Leibler cross-entropy between g and h 
(compare with (1 S 3 ) )  is defined (in the continuous case) as 

D(g,  h)  is also called the Kullback-Leibler divergence, the cross-entropy, and the relative 
entropy. If not stated otherwise, we shall call D(g,  h)  the cross-entropy (CE) between g 
and h. Notice that D(g, h) is not a distance between g and h in the formal sense, since in 
general D(g, h) # D(h ,  9). Nonetheless, it is often useful to think of D ( g ,  h) as a distance 
because 

DD(L7, h)  > 0 

and D(g, h) = 0 if and only if g(z) = h(z) .  This follows from Jensen’s inequality (if 4 is 
a convex function, such as - In, then IE[q5(X)] 2 $(E[X])). Namely, 

It can be readily seen that the mutual infomation M(X, Y) of vectors X and Y defined 
in (1 .57) is related to the CE in the following way: 

where f is the (joint) pdf of (X, Y) and fx and fy are the (marginal) pdfs of X and Y, 
respectively. In other words, the mutual information can be viewed as the CE that measures 
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the distance between the joint pdf f of X and Y and the product of their marginal pdfs fx 
and fy, that is, under the assumption that the vectors X and Y are independent. 

Remark 1.14.1 (Other Distance Measures) Instead of Kullback-Leibler distance, one 
can use several other distance or divergence measures between pdfs. An important class of 
such “distances” is formed by Csiszir’s $-divergence [lo], 

(1.60) 

where $ is any function such that $(1) = 0 and $”(z) > 0, z > 0 (in particular, $ is 
convex). Below is a list of important divergence measures that can be found as special 
cases of the $-divergence. 

0 Bum CE distance: 

Kullback-Leibler CE distance: 

Hellinger distance: 

0 Pearson x 2  discrepancy measure: 

Neymann x 2  goodness ofjit measure: 

1.14.3 The Maximum Likelihood Estimator and the Score Function 

We introduce here the notion of the score function (SF) via the classical maximum likelihood 
estimator. Consider a random vector X = ( X I , .  . . , Xn), which is distributed according 
to a fixed pdf f( . ;  8 )  with unknown parameter (vector) 8 E 8. Assume that we wish to 
estimate 8 on the basis of a given outcome x (the data) of X. For a given x, the function 
L(8;  x) = f(x; 8 )  is called the likelihoodfunction. Note that L is a function of 8 fora  fixed 
parameter x, whereas for the pdf f it is the other way around. The maximum likelihood 
estimate g = g(x) of 8 is defined as 

8 = argmaxL(8; x) . 
e g o  

(1.61) 
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Because the function In is monotone increasing, we also have 
A 

e = a r g m a x l n L ( 8 ; x )  . 
e m  

(1.62) 

The random variable g(X) with X - f ( . ;  0) is the corresponding maximum likelihood 
estimator, which is again written as g. Note that often the data XI, . . . , X, form a random 
sample from some pdf f l( . ;  O), in which case f ( x ;  0) = nEl fl(x~i; 0) and 

(1.63) 

If L(e; x) is a continuously differentiable concave function with respect to 8 and the 
maximum is attained in the interior of 0, then we can find the maximum likelihood estimator 
of 8 by solving 

Vs In L(0;  x) = 0 . 

The function S(.; x )  defined by 

is called the scorefunction. For the exponential family (A.9) it is easy to see that 

(1.64) 

(1.65) 

The random vector S(0) = S(0; X) with X - f ( . ;  0) is called the (eficient) score. The 
expected score is always equal to the zero vector, that is 

where the interchange of differentiation and integration is justified via the bounded conver- 
gence theorem. 

1.14.4 Fisher Information 

The covariance matrix 3(8) of the score S(0) is called the Fisher information matrix. Since 
the expected score is always 0, we have 

qe) = Ee [ ~ ( e ) s ( e ) ~ ]  . (1.66) 

In the one-dimensional case we thus have 

Because 
2 2  
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we see that (under straightforward regularity conditions) the Fisher information is also given 

In the multidimensional case we have similarly 

qe)  = -1Ee [vs(e)] = -1Ee [v2 In f(x; e)] , (1.67) 

where V2 In f (X;  0) denotes the Hessian of In f(X; O), that is, the (random) matrix 

The importance of the Fisher information in statistics is corroborated by the famous Cramkr- 
Rao inequality, which (in a simplified form) states that the variance of any unbiased estimator 
2 of g(0 )  is bounded from below via 

For more details see [ 131. 

1 .I 5 CONVEX OPTIMIZATION AND DUALITY 

Let f (x) ,  z E R, be a real-valued function with continuous derivatives- also called a C' 
function. The standard approach to minimizing f (z)  is to solve the equation 

f'(z) = 0 .  (1.69) 

The solutions to (1.69) are called stationarypoinfs. If, in addition, the function has contin- 
uous second derivatives (a so-called C2 function), the condition 

f"(2*) > 0 (1.70) 

ensures that a stationary point z* is a local minimizer, that is, f(x*) < f (z)  for all z in a 
small enough neighborhood of x*. 

For a C' function on R", (1.69) generalizes to 

(1.71) 

where Vf(x) is the gradient o f f  at x. Similarly, a stationary point x* is a local minimizer 
o f f  if the Hessian matrix (or simply Hessian) at x*, 

is positive dejinite, that is, xT [V2f(x*)] x > 0 for all x # 0. 
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The situation can be further generalized by introducing constraints. A general con- 
strained optimization problems can be written as 

min f (x)  (1.73) 
XEW" 

subject to: h,(x) = 0, i = 1,.  . . ,m (1.74) 
g,(x) 6 0, 2 = 1,.  . . , k .  (1.75) 

Here f ,  g, and h,  are given functions, f(x) is called the objective function, and h,(x) = 0 
and g,(x) < 0 represent the equality and inequality constraints, respectively. 

The region of the domain where the objective function is defined and where all the 
constraints are satisfied is called thefeasible region. A global solution to the optimization 
problem is a point X* E R" such that there exists no other point x E R" for which 
f(x) < f(x*). Alternative names are global minimizer and global minimum, although the 
latter could be confused with the minimum value of the function. Similarly, for a local 
solutiodminimizer, the condition f(x) < f(x*) only needs to hold in some neighborhood 
of x*. 

Within this formulation fall many of the traditional optimization problems. An optimiza- 
tion problem in which the objective function and the equality and inequality constraints are 
linear functions, is called a linearprogram. An optimization problem in which the objec- 
tive function is quadratic, while the constraints are linear functions is called a quadratic 
program. Convexity plays an important role in many practical optimization problems. 

Definition 1.15.1 (Convex Set) A set X E R" is called convex if, for all x, y E X and 
O E (0, l), the point (Ox + (1 - O)y) E X. 

Definition 1.15.2 (Convex Function) A function f(x) on a convex set X is called convex 
if, for all x, y E X and 6' E (0, l), 

f(ox + (1 - 0)Y) I OfW + (1 - O)f(Y)  ' (1.76) 

If a strict inequality in (1.76) holds, the function is said to be strictly convex. If a function 
f is (strictly) convex, then -f is said to be (strictly) concave. Assuming X is an open set, 
convexity for f E C1 is equivalent to 

f(y) 3 ~ ( x )  + (y - x ) ~ v ~ ( x )  for all x, y E X. 

Moreover, for f E C2, convexity is equivalent to the Hessian matrix being positive semidef- 
inite for all x E %: 

yT [02f(x)] y 2 0, 

The problem (1.73) is said to be a convexprogrammingproblem if 

1. the objective function f is convex, 

2.  the inequality constraint functions {gz(x)} are convex, and 

3. the equality constraint functions { h , ( x ) }  are afine, that is, of the form aTx - b,. 

Note that the last requirement follows from the fact that an equality constraint h,(x) = 0 
can be viewed as a combination of the inequality constraints h,(x) 6 0 and -h,(x)  < 0, 
so that both h, and -h, need to be convex. Both the linear and quadratic programs (with 
positive definite matrix C) are convex. 

for all y E R" . 
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1.15.1 Lagrangian Method 

The main components of the Lagrangian method are the Lagrange multipliers and the La- 
grange function, The method was developed by Lagrange in 1797 for the optimization 
problem (1.73) with equality constraints (1.74). In 195 1 Kuhn and Tucker extended La- 
grange's method to inequality constraints. 

Definition 1.15.3 (Lagrange Function) Given an optimization problem (1.73) containing 
only equality constraints h,(x) = 0, i = 1, . . . , rn, the Lagrange function, or Lagrangian, 
is defined as 

+I  P )  = f(x) + c P1 h l ( 4  3 

1 

where the coefficients { Pz} are called the Lagrange multipliers. 

A necessary condition for a point x' to be a local minimizer of f(x) subject to the equality 
constraints h, (x) = 0 ,  i = 1 , .. . , m, is 

v, q x * ,  P' )  = 0 , 
v p  L(x*,  P * )  = 0 

for some value p*. The above conditions are also sufficient if L ( x ,  p')  is a convex function 
of x. 

EXAMPLE 1.17 Maximum Entropy Distribution 

Let p = {pi, i = 1,. . . , n}  be a probability distribution. Consider the following 
program, which maximizes the (Shannon) entropy: 

n 

n 

subject to: cpi = 1 . 
i=l 

The Lagrangian is 

i= 1 / 

over the domain {(p,P) : pi 2 0, i  = 1,. . . , n, 0 E R}. The optimal solution 
p* of the problem is the uniform distribution, that is, p' = ( l / n , .  . . , l /n) ;  see 
Problem 1.35. 

Definition 1.15.4 (Generalized Lagrange Function) Given the original optimization 
problem (1.73), containing both the equality and inequality constraints, the generalized 
Lagrange function, or simply Lagrangian, is defined as 

k m 
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A necessary condition for a point x* to be a local minimizer of f(x) in the optimization 
problem (1.73) is the existence of an a* and p' such that 

v x L ( X * , a * , p * )  = 0 ,  
VpL(x* ,a* ,p* )  = 0 ,  

gi(x*) 6 0, i = 1,. . . , k , 
a; 2 0, 2 = 1, . . . ,  k ,  

a; gi(x*) = 0, 2 = 1,. . . , k- . 

These equations are usually referred as the Karush-Kuhn-Tucker (KKT) conditions. For 
convex programs we have the following important results: 

1. Every local solution xL to a convex programming problem is a global solution and 
the set of global solutions is convex. If, in addition, the objective function is strictly 
convex, then any global solution is unique. 

2. For a strictly convex programming problem with C' objective and constraint func- 
tions, the KKT conditions are necessary and sufficient for a unique global solution. 

1.15.2 Duality 

The aim of duality is to provide an alternative formulation of an optimization problem 
that is often more computationally efficient or has some theoretical significance (see [8], 
page 219). The original problem (1.73) is referred to as the primal problem, whereas the 
reformulated problem, based on Lagrange multipliers, is referred to as the dual problem. 
Duality theory is most relevant to convex optimization problems. It is well known that 
if the primal optimization problem is (strictly) convex, then the dual problem is (strictly) 
concave and has a (unique) solution from which the optimal (unique) primal solution can 
be deduced. 

Definition 1.15.5 (Lagrange Dual Program) The Lagrange dual program of the primal 
program (1.73), is 

max L * ( a , P )  
Q,P 

subject to: a > 0 , 

where L' is the Lagrange dualfunction: 

L*(a,p) = inf C ( x , a , p )  . 
XE 2%- 

(1.77) 

It is not difficult to see that if j *  is the minimal value of the primal problem, then 
La(&,  p)  6 f' for any a > 0 and any p. This property is called weak dual@. The 
Lagrangian dual program thus determines the best lower bound on f'. If d' is the optimal 
value for the dual problem then d' < f'. The difference f' - d' is called the dualitygup. 

The duality gap is extremely useful for providing lower bounds for the solutions of 
primal problems that may be impossible to solve directly. It is important to note that for 
linearly constrained problems, if the primal is infeasible (does not have a solution satisfying 
the constraints), then the dual is either infeasible or unbounded. Conversely, if the dual 
is infeasible, then the primal has no solution. Of crucial importance is the strong duuli9 
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theorem, which states that for convex programs (1.73) with linear constrained functions hi 
and g, the duality gap is zero, and any X *  and (a*, p*) satisfying the KKT conditions are 
(global) solutions to the primal and dual programs, respectively. In particular, this holds 
for linear and convex quadratic programs (note that not all quadratic programs are convex). 

For a convex primal program with C1 objective and constraint functions, the Lagrangian 
dual function (1.77) can be obtained by simply setting the gradient (with respect to x )  of the 
Lagrangian C(x,  a,  p) to zero. One can further simplify the dual program by substituting 
into the Lagrangian the relations between the variables thus obtained. 

EXAMPLE 1.18 Linear Programming Problem 

Consider the following linear programming problem: 

min cTx 
X 

subject to: Ax 2 b . 
The Lagrangian is C(x,  a )  = cTx - a T ( A x  - b). The Lagrange dual function is 
the infimum of L: over all x;  thus, 

bTa if A T a = c ,  
-m otherwise, 

C*(a) = 

so that the Lagrange dual program becomes 

max bTa 

subject to: A T a  = c 
a 

a > O .  

It is interesting to note that for the linear programming problem the dual of the dual 
problem always gives back the primal problem. 

EXAMPLE 1.19 Quadratic Programming Problem 

Consider the following quadratic programming problem: 

1 
x 2  

min - X ~ C X  

subject to: C x  > b , 
where the n x n matrix C is assumed to be positive definite (for a general quadratic 
programming problem the matrix C can always be assumed to be symmetric, but it is 
not necessarily positive definite). The Lagrangianis C ( x ,  a )  = ;xTCx- a T ( C x -  
b). We can minimize this by taking its gradient with respect to x and setting it to 
zero. This gives C x  - C a  = C ( x  - a )  = 0. The positive definiteness of C implies 
that x = a. The maximization of the Lagrangian is now reduced to maximizing 
C(a, a )  = 3 a T C a  - a T ( C a  - b) = - $  a T C a  + aTb subject to a 0 .  
Hence, we can write the dual problem as 

1 
a 2 

max - - a T C a  + aTb 

subject to: a 2 0 . 
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Notice that the dual problem involves only simple nonnegativity constraints. 
Now suppose that we are given the Cholesky factorization C = BRT.  It turns out 

(see Problem 1.36) that the Lagrange dual of the above dual problem can be written 
as 

‘ T  rnin 2 p p 
P 

subject to: B p  2 b , 
(1.78) 

with p = BTa.  This is a so-called feast distance problem, which, provided we 
know the Cholesky factorization of C, is easier to solve than the original quadratic 
programming problem. 

A final example of duality is provided by the widely used minimum cross-entropy method 
[lo]. 

W EXAMPLE 1.20 Minimum Cross-Entropy (MinxEnt) Method 

Let X be a discrete random variable (or vector) taking values X I ,  . . . , x , ,  and let q = 
( q l ,  . . . , qT)* and p = (PI,. . . , p r ) T  be two strictly positive distribution (column) 
vectors for X. Consider the following primal program of minimizing the cross- 
entropy of p and q, that is, pi  ln(pi/qi), for a fixed q, subject to linear equality 
constraints: 

(1.79) I)k 

q k  
min c p k  In- 

k = l  
r 

subject to: E,[s,(x)] = C s t ( X k ) p k  = y,, i = 1 , .  . . , m (1.80) 
k = l  

(1.81) 
k=l  

where 5’1, . . . , S, are arbitrary functions. 
Here the objective function is convex, since it is a linear combination of functions of 

the form pln(p/c), which are convex on R+, for any c > 0. In addition, the equality 
constraint functions are affine (of the form aTp - y). Therefore, this problem is 
convex. To derive the optimal solution p’ of the above primal program, it is typically 
easier to solve the associated dual program [ 101. Below we present the corresponding 
procedure. 

1. The Lagrangian of the primal problem is given by 

where X = (A,, . . . , is the Lagrange multiplier vector corresponding to (1.80) 
and /3 is the Lagrange multiplier corresponding to ( 1  31). Note that we can use either 
a plus or a minus sign in the second sum of (1 32). We choose the latter, because later 
on we generalize the above problem to inequality (2)  constraints in (1.80), giving 
rise to a minus sign in the Lagrangian. 
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2. Solve (for fixed X and p) 
min q p ,  A, 0) 

VpL(P, A, P )  = 0 I 

P 

by solving 

which gives the set of equations 

(1.83) 

Denote the optimal solution and the optimal function value obtained from the program 
(1.83) as p(A, p) and L* (A, p), respectively. The latter is the Lagrange dual function. 
We have 

m 

pk(X,p)=qkexp - /3 -1+xXiS i (xk )  , k = l ,  . . . ,  T .  (1.84) ( i= 1 

Since the sum of the { p k }  must be I ,  we obtain 

(1.85) 

Substituting p(X, p) back into the Lagrangian gives 
m 

L * ( X , P )  = -1 +>:X,Y, - p .  (1.86) 
1=1 

3. Solve the dual program 
max L* (A, P )  

X , P  
(1.87) 

Since ,f3 and X are related via (1 .85), solving (1 37 )  can be done by substituting the 
corresponding p(X) into (1.86) and optimizing the resulting function: 

m m 

D(X)=  - 1 f x X i ~ i - I n  e x p { - l + ~ ~ , X i S ; ( x k ) }  
i=l 

Since D(X) is continuously differentiable and concave with respect to A, we can 
derive the optimal solution, A‘, by solving 

VXD(X) = 0 ,  (1.89) 

which can be written componentwise in the following explicit form: 
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for j = 1, . . . , m. The optimal vector A*  = (AT, . . . , A;) can be found by solving 
(1.90) numerically. Note that if the primal program has a nonempty interior optimal 
solution, then the dual program has an optimal solution A’. 

4. Finally, substitute X = A’ and /3 = p(X*) back into (1.84) to obtain the solution to 
the original MinxEnt program. 

It is important to note that we do not need to explicitly impose the conditions 
p i  2 0, i = 1,.  . . , n, because the quantities { p i }  in (1.84) are automatically strictly 
positive. This is a crucial property of the CE distance; see also [2]. It is instructive 
(see Problem 1.37) to verify how adding the nonnegativity constraints affects the above 
procedure. 

When inequality constraints IE,[Si(X)] 2 yi are used in (1.80) instead of equality 
constraints, the solution procedure remains almost the same. The only difference is 
that the Lagrange multiplier vector X must now be nonnegative. It follows that the 
dual program becomes 

max D(X) 
x 

subject to: X 2 0 , 

with D(X) given in (1.88). 
A further generalization is to replace the above discrete optimization problem 

with afunctional optimization problem. This topic will be discussed in Chapter 9. In 
particular, Section 9.5 deals with the MinxEnt method, which involves a functional 
MinxEnt problem. 

PROBLEMS 

Probability Theory 

1.1 
nition 1.1.1 (here A and B are events): 

Prove the following results, using the properties of the probability measure in Defi- 

a) P(AC) = 1 - P(A) .  
b) P ( A  U B )  = P ( A )  + P(B) - P(A n B).  

1.2 Prove the product rule (1.4) for the case of three events. 

1.3 We draw three balls consecutively from a bowl containing exactly five white and five 
black balls, without putting them back. What is the probability that all drawn balls will be 
black? 

1.4 Consider the random experiment where we toss a biased coin until heads comes up. 
Suppose the probability of heads on any one toss is p. Let X be the number of tosses 
required. Show that X - G(p). 
1.5 
5. Let N be the number of people queried until we get a “duplicate” birthday. 

In a room with many people, we ask each person hisher birthday, for example May 

a) Calculate P(N > n), n = 0 , 1 , 2 , .  . .. 
b) For which n do we have P(N < n) 2 1/2? 
c) Use a computer to calculate IE[N]. 
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1.6 
random variables that are derived from X and Y via the linear transformation 

Let X and Y be independent standard normal random variables, and let U and V be 

sina -s;~sa) (c) (;) = 

a) Derive the joint pdf of U and V .  
b) Show that U and V are independent and standard normally distributed. 

Let X - Exp(X). Show that the memorylessproperty holds: for all s, t 2 0, 1.7 

P(X > t - t s J X  > t )  =P(X > s ) .  

1.8 Let X1, X2, X3 be independent Bernoulli random variables with success probabilities 
1/2,1/3,  and 1/4, respectively. Give their conditional joint pdf, given that Xi +X2 +X3 = 
2. 

1.9 

1.10 

Verify the expectations and variances in Table 1.3. 

Let X and Y have joint density f given by 

f ( z , y )  = c z y ,  0 6 y 6 5, 0 < z < 1 .  

a) Determine the normalization constant c. 
b) Determine P(X + 2 Y < 1). 

1.11 Let X - Exp(X) and Y N Exp(p) be independent. Show that 

a) min(X, Y) - Exp(X + p ) ,  

b) P(X < Y I min(X,Y))  = - x 
x + 1,. 

1.12 

1.13 
fact that the variance of aX + Y is always non-negative, for any a.] 

1.14 Consider Examples 1.1 and 1.2. Define X as the function that assigns the number 
2 1  + . . . + zn to each outcome w = ( 2 1 ,  . . . , zn). The event that there are exactly k heads 
in 71. throws can be written as 

Verify the properties of variance and covariance in Table 1.4. 

Show that the correlation coefficient always lies between -1 and 1. [Hint, use the 

{ w  E R : X(w) = k }  . 

If we abbreviate this to {X = k } ,  and further abbreviate P({ X = k } )  to P(X = k ) ,  then 
we obtain exactly (1.7). Verify that one can always view random variables in this way, 
that is, as real-valued functions on s2, and that probabilities such as P(X 6 z) should be 
interpreted as P ( { w  E R : X(w) 6 x}). 

1.15 Show that 
/ n  \ n 

1.16 Let C be the covariance matrix of a random column vector X. Write Y = X - p, 
where p is the expectation vector of X. Hence, C = IEIYYT]. Show that C is positive 
semidefinite. That is, for any vector u, we have uTCu 2 0. 
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1.17 Suppose Y - Gamma(n; A). Show that for all z 2 0 

(1.91) 

1.18 
numbers, XI, . . . , X,, from the interval [0,1]. 

Consider the random experiment where we draw uniformly and independently n 

a) Let A4 be the smallest of the n numbers. Express A4 in terms of XI,  . . . , X,. 
b) Determine the pdf of M .  

1.19 Let Y = ex, where X - N(0,l). 
a) Determine the pdf of Y .  
b) Determine the expected value of Y .  

1.20 We select apoint (X, Y )  from the triangle (0,O) - ( 1 , O )  - (1,l) in such a way that 
X has a uniform distribution on (0 , l )  and the conditional distribution of Y given X = x 
is uniform on (0, x). 

a) Determine the joint pdf of X and Y. 
b) Determine the pdf of Y .  
c) Determine the conditional pdf of X given Y = y for all y E (0,l) .  
d) Calculate E[X I Y = y] for all y E ( 0 , l ) .  
e) Determine the expectations of X and Y .  

Poisson Processes 

1.21 Let { N t ,  t 2 0) be a Poisson process with rate A = 2. Find 
a) P(N2 = 1, N3 = 4, N:, = 5 ) ,  
b) P(N4 = 3 I N2 = 1, N3 = 2), 

d) P(N[2,7] = 4, N[3,8] = 6), 
e) E[N[4,6] IN[1,5] = 31. 

Show that for any fixed k E N, t > 0 and A > 0, 

c) E“4 I N2 = 21, 

1.22 

(Hint: write out the binomial coefficient and use the fact that limn+m (1 - $)n = eCXt.) 

1.23 Consider the Bernoulli approximation in Section 1.1 1. Let U1, U2, . . . denote the 
times of success for the Bernoulli process X. 

a) Verify that the “intersuccess” times U1, U2 - U l ,  . . . are independent and have a 

b) For small h and n = Lt/hJ, show that the relationship P(A1 > t )  =: P(U1 > n) 
geometric distribution with parameter p = Ah. 

leads in the limit, as n -+ 00, to 

B(A1 > t )  = e-Xt 
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1.24 
j = O , 1 , 2  , . . . ,  n, 

If {N, , t  2 0 )  is a Poisson process with rate A, show that for 0 < u. < t and 

P(NTL = j I Nt = n) = (;) (f) j  (1 - y, 
that is, the conditional distribution of Nu given Nt = n is binomial with parameters n and 

Markov Processes 

1.25 
Example 1.10. Also, calculate E[X,] and the variance of X, for each n. 

1.26 

U l t .  

Determine the (discrete) pdf of each X,, n = 0, 1 ,2 ,  . . . for the random walk in 

Let {X,, n E N} be a Markov chain with state space {0,1,2}, transition matrix 

0.3 0.1 0.6 

0.1 0.7 0.2 

and initial distribution 7r = (0.2,0.5,0.3). Determine 

P = ( 0.4 0.4 0.2 ) , 
a) P(X1 = 2), 

c) P(X3 = 2 I xo = O ) ,  
b) P(X2 = 2), 

d) P(X0 = 1 I Xi = 2), 
e )  P(X1 = l ,X3 = 1). 

1.27 Consider two dogs harboring a total number of m fleas. Spot initially has b fleas 
and Lassie has the remaining m - b. The fleas have agreed on the following immigration 
policy: at every time n = 1 , 2 .  . . a flea is selected at random from the total population and 
that flea will jump from one dog to the other. Describe the flea population on Spot as a 
Markov chain and find its stationary distribution. 

1.28 Classify the states of the Markov chain with the following transition matrix: 

0.0 0.3 0.6 0.0 0.1 
0.0 0.3 0.0 0.7 0.0 

0.0 0.1 0.0 0.9 0.0 
0.1 0.1 0.2 0.0 0.6 

1.29 Consider the following snakes-and-ladders game. Let N be the number of tosses 
required to reach the finish using a fair die. Calculate the expectation of N using a computer. 

start 

finish 
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1.30 Ms. Ella Brum walks back and forth between her home and her office every day. 
She owns three umbrellas, which are distributed over two umbrella stands (one at home 
and one at work). When it is not raining, Ms. Brum walks without an umbrella. When it is 
raining, she takes one umbrella from the stand at the place of her departure, provided there 
is one available. Suppose the probability that it is raining at the time of any departure is p .  
Let X ,  denote the number of umbrellas available at the place where Ella arrives after walk 
number n; n = 1,2, . . ., including the one that she possibly brings with her. Calculate the 
limiting probability that it rains and no umbrella is available. 

1.31 A mouse is let loose in the maze of Figure 1.9. From each compartment the mouse 
chooses one of the adjacent compartments with equal probability, independent of the past. 
The mouse spends an exponentially distributed amount of time in each compartment. The 
mean time spent in each of the compartments 1, 3, and 4 is two seconds; the mean time 
spent in compartments 2 ,5 ,  and 6 is four seconds. Let { X t ,  t 3 0 )  be the Markov jump 
process that describes the position of the mouse for times t 2 0. Assume that the mouse 
starts in compartment 1 at time t = 0. 

Figure 1.9 A maze. 

What are the probabilities that the mouse will be found in each of the compartments 
1,2, . . . , 6  at some time t far away in the future? 

1.32 In an M/M/m-queueing system, customers arrive according to a Poisson process 
with rate a. Every customer who enters is immediately served by one of an infinite number 
of servers; hence, there is no queue. The service times are exponentially distributed, with 
mean l / b .  All service and interarrival times are independent. Let X t  be the number of 
customers in the system at time t .  Show that the limiting distribution of X t ,  as t ---t 00, is 
Poisson with parameter a/b.  

Optimization 

1.33 

1.34 
that V, f xTAx = Ax. What is the gradient if A is not symmetric? 

1.35 
distribution. 

1.36 Derive the program (1.78). 

Let a and let x be n-dimensional column vectors. Show that V, aTx = a. 

Let A be a symmetric n x n matrix and x be an n-dimensional column vector. Show 

Show that the optimal distribution p* in Example 1.17 is given by the uniform 
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1.37 Consider the MinxEnt program 
n 

n 

subject to: p 2 0 ,  Ap = b, c p i  = 1 , 
i=l 

where p and q are probability distribution vectors and A is an m x n matrix. 
a) Show that the Lagrangian for this problem is of the form 

b) Show that p ,  = qi exp( -0 - 1 + pi + C,”=, X j  a j i ) ,  for i = 1, . . . , n. 
c) Explain why, as a result of the KKT conditions, the optimal p* must be equal to 

d) Show that the solution to this MinxEnt program is exactly the same as for the 
the zero vector. 

program where the nonnegativity constraints are omitted. 

Further Reading 

An easy introduction to probability theory with many examples is [ 141, and a more detailed 
textbookis [9 ] .  A classical reference is [7]. An accurate and accessible treatment of various 
stochastic processes is given in [4]. For convex optimization we refer to [3] and [8]. 
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  CHAPTER 2 

RANDOM NUMBER, RANDOM VARIABLE, 
AND STOCHASTIC PROCESS 
G E N E RAT1 ON 

2.1 INTRODUCTION 

This chapter deals with the computer generation of random numbers, random variables, 
and stochastic processes. In a typical stochastic simulation, randomness is introduced into 
simulation models via independent uniformly distributed random variables. These random 
variables are then used as building blocks to simulate more general stochastic systems. 

The rest of this chapter is organized as follows. We start, in Section 2.2, with the gener- 
ation of uniform random variables. Section 2.3 discusses general methods for generating 
one-dimensional random variables. Section 2.4 presents specific algorithms for generating 
variables from commonly used continuous and discrete distributions. In Section 2.5 we 
discuss the generation of random vectors. Sections 2.6 and 2.7 treat the generation of Pois- 
son processes, Markov chains and Markov jump processes. Finally, Section 2.8 deals with 
the generation of random permutations. 

2.2 RANDOM NUMBER GENERATION 

In the early days of simulation, randomness was generated by manual techniques, such 
as coin flipping, dice rolling, card shuffling, and roulette spinning. Later on, physical 
devices, such as noise diodes and Geiger counters, were attached to computers for the same 
purpose. The prevailing belief held that only mechanical or electronic devices could produce 
truly random sequences. Although mechanical devices are still widely used in gambling 
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and lotteries, these methods were abandoned by the computer-simulation community for 
several reasons: (a) Mechanical methods were too slow for general use, (b) the generated 
sequences cannot be reproduced and, (c) it has been found that the generated numbers 
exhibit both bias and dependence. Although certain modem physical generation methods 
are fast and would pass most statistical tests for randomness (for example, those based 
on the universal background radiation or the noise of a PC chip), their main drawback 
remains their lack of repeatability. Most of today's random number generators are not 
based on physical devices, but on simple algorithms that can be easily implemented on a 
computer. They are fast, require little storage space, and can readily reproduce a given 
sequence of random numbers. Importantly, a good random number generator captures all 
the important statistical properties of true random sequences, even though the sequence is 
generated by a deterministic algorithm. For this reason, these generators are sometimes 
called pseudorandom. 

The most common methods for generating pseudorandom sequences use the so-called 
linear congruentialgenerutors, introduced in [6]. These generate a deterministic sequence 
of numbers by means of the recursive formula 

Xi+l = ax, + c (mod m) , (2.1) 

where the initial value, X O ,  is called the seed and the a,  c, and m (all positive integers) are 
called the multiplier, the increment and the modulus, respectively. Note that applying the 
modulo-m operator in (2.1) means that a x i  + c is divided by m, and the remainder is taken 
as the value for Xi+l. Thus, each Xi can only assume a value from the set (0, 1, . . . , m- l}, 
and the quantities 

X 
m 

u. - 2 
1 -  1 

called pseudorandom numbers, constitute approximations to a true sequence of uniform 
random variables. Note that the sequence X O ,  X I ,  X2,  . . . will repeat itself after at most 
rn steps and will therefore be periodic, with period not exceeding m. For example, let 
a = c = Xo = 3 and m = 5 .  Then the sequence obtained from the recursive formula 
X,+l = 3 X ,  + 3 (mod 5) is 3 , 2 , 4 , 0 , 3 ,  which has period 4. In the special case where 
c = 0, (2.1) simply reduces to 

XE+l = a X ,  (mod T I )  . (2.3) 

Such a generator is called a multiplicative congruentiulgenerutor. It is readily seen that 
an arbitrary choice of X o ,  a ,  c, and m will not lead to a pseudorandom sequence with 
good statistical properties. In fact, number theory has been used to show that only a few 
combinations of these produce satisfactory results. In computer implementations, m is 
selected as a large prime number that can be accommodated by the computer word size. 
For example, in a binary 32-bit word computer, statistically acceptable generators can be 
obtained by choosing m = 231 - 1 and a = 75, provided that the first bit is a sign bit. A 
64-bit or 128-bit word computer will naturally yield better statistical results. 

Formulas (2. l), (2.2), and (2.3) can be readily extended to pseudorandom vector gener- 
ation. For example, the n-dimensional versions of (2.3) and (2.2) can be written as 

and 
U, = M-'X,, 
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respectively, where A is a nonsingular n x n matrix, M and X are n-dimensional vectors, 
and M-’Xi is the n-dimensional vector with components MY’X1, .  . . , MLIX, .  

Besides the linear congruential generators, other classes have been proposed to achieve 
longer periods and better statistical properties (see [ 5 ] ) .  

Most computer languages already contain a built-in pseudorandom number generator. 
The user is typically requested only to input the initial seed, Xo, and upon invocation 
the random number generator produces a sequence of independent, uniform (0 , l )  random 
variables. We therefore assume in this book the availability of such a “black box” that is 
capable of producing a stream of pseudorandom numbers. In Matlab, for example, this is 
provided by the rand function. 

W EXAMPLE 2.1 Generating Uniform Random Variables in Matlab 

This example illustrates the use of the rand function in Matlab to generate samples 
from the U(0,l) distribution. For clarity we have omitted the “ans = ” output in the 
Matlab session below. 

>> rand 
0.0196 

>> rand 
0.823 

>> r a n d ( l , 4 )  
0.5252 0.2026 

rand(’s ta te’ ,1234)  
>> rand 

rand(’s ta te ’  ,1234) 
>> rand 

0.6104 

0.6104 

% generate a uniform random number 

3 generate another uniform random number 

% generate a uniform random vector 

% s e t  the  seed t o  1234 
% generate a uniform random number 

0.6721 0.8381 

% r e s e t  t h e  seed t o  1234 

% t h e  previous outcome is repeated 

2.3  RANDOM VARIABLE GENERATION 

In this section we discuss various general methods for generating one-dimensional random 
variables from a prescribed distribution. We consider the inverse-transform method, the 
alias method, the composition method, and the acceptance-rejection method. 

2.3.1 Inverse-Transform Method 

Let X be a random variable with cdf F .  Since F is a nondecreasing function, the inverse 
function F-’ may be defined as 

~ - ‘ ( y )  = inf{z : F ( Z )  2 y}  , o < y Q 1 .  (2.6) 

(Readers not acquainted with the notion inf should read min.) It is easy to show that if 
U - U(0, I), then 

has cdf F. Namely, since F is invertible and P(U < u )  = u, we have 
X = F - y U )  (2.7) 
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Thus, to generate a random variable X with cdf F ,  draw U - U(0,l) and set X = F - l ( U ) .  
Figure 2.1 illustrates the inverse-transform method given by the following algorithm. 

Algorithm 2.3.1 (The Inverse-Transform Method) 

I .  Generate U from U(0,l). 

2. Return X = F- ' (U) .  

Figure 2.1 Inverse-transform method. 

EXAMPLE2.2 

Generate a random variable from the pdf 

2x, O < X < l  

0 otherwise. f (XI = 

The cdf is 
x < o  

0 6 x < 1 F ( x )  = J," 2ydy = 5 2 ,  { 1: 2 > 1. 

Applying (2.7), we have 
X = F - l ( U )  = fi. 

Therefore, to generate a random variable X from the pdf (2.9), first generate a random 
variable U from U(0,l)  and then take its square root. 

EXAMPLE 2.3 Order Statistics 

Let X1, . . . , X, be iid random variables with cdf F .  We wish to generate ran- 
dom variables X(nl and X(l) that are distributed according to the order statistics 
max(X1,. . . , X,) and min(X1,. . . , X,), respectively. From Example 1.7 we see 



RANDOM VARIABLE GENERATION 53 

that the cdfs of X ( n l  and X(l) are F,(x)  = [F(x) ln  and F l ( z )  = 1 - [ l  - F ( x ) ] " ,  
respectively. Applying (2.7), we get 

and, since 1 - U is also from U(0, l), 

X(1)  = F - ' ( l  - U"n) . 

In the special case where F ( x )  = 2, that is, Xi - U(0, l), we have 

X ( n )  = U'/" and X(l) = 1 - U1/" . 

EXAMPLE 2.4 Drawing from a Discrete Distribution 

Let X be a discrete random variable with P(X = x , )  = p , ,  z = 1 , 2 , .  . . , with c, p ,  = 1 and x1 < 5 2  < . . .. The cdf F of X is given by F ( x )  = z,:x,Gx p , ,  i = 
1 , 2 , .  . . and is illustrated in Figure 2.2. 

P3 { i  j p d - -  

Figure 2.2 Inverse-transform method for a discrete random variable. 

Hence, the algorithm for generating a random variable from F can be written as follows. 

Algorithm 2.3.2 (Inverse-Transform Method for a Discrete Distribution) 

1. Generate U - U ( 0 , l ) .  

2. Find the smaIIestpositive integer; k,  such that U < F ( x k )  andreturn x = xk. 

Much of the execution time in Algorithm 2.3.2 is spent in making the comparisons of Step 
2. This time can be reduced by using efficient search techniques (see [ 2 ] ) .  

In general, the inverse-transform method requires that the underlying cdf, F ,  exists 
in a form for which the corresponding inverse function F-' can be found analytically 
or algorithmically. Applicable distributions are, for example, the exponential, uniform, 
Weibull, logistic, and Cauchy distributions. Unfortunately, for many other probability 
distributions, it is either impossible or difficult to find the inverse transform, that is, to solve 

F ( x )  = 1: f ( t )  dt = u 
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with respect to 2. Even in the case where F-' exists in an explicit form, the inverse- 
transform method may not necessarily be the most efficient random variable generation 
method (see [2]). 

2.3.2 Alias Method 

An alternative to the inverse-transform method for generating discrete random variables, 
which does not require time-consuming search techniques as per Step 2 of Algorithm 2.3.2, 
is the so-called alias method [l 11. It is based on the fact that an arbitrary discrete n-point 
pdf f, with 

can be represented as an equally weighted mixture of n - 1 pdfs, q ( k ) ,  k = 1,. . . , n - 1, 
each having at most two nonzero components. That is, any n-point pdf f can be represented 
as 

f (Q) = P(X = Xi), a = 1,. . . , n , 

(2.10) 

for suitably defined two-point pdfs q ( k ) ,  k = 1, . . . , n - 1; see [ 111. 
The alias method is rather general and efficient but requires an initial setup and extra 

storage for the n - 1 pdfs, q ( k ) .  A procedure for computing these two-point pdfs can be 
found in [2]. Once the representation (2.10) has been established, generation from f is 
simple and can be written as follows: 

Algorithm 2.3.3 (Alias Method) 

1. Generate U - U(0, l )  andset K = 1 + l(n - 1) U J .  

2. Generate Xfrom the two-pointpdfq(K). 

2.3.3 Composition Method 

This method assumes that a cdf, F ,  can be expressed as a mixture of cdfs {Gi} ,  that is: 

m 

where 

i=l 

m 

(2.11) 

i= 1 

Let Xi - Gi and let Y be a discrete random variable with P(Y = i) = p i ,  independent of 
Xi, for 1 < i < m. Then a random variable X with cdf F can be represented as 

i=l 

It follows that in order to generate X from F ,  we must first generate the discrete random 
variable Y and then, given Y = i, generate X, from G,. We thus have the following 
method. 
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Algorithm 2.3.4 (Composition Method) 

1. Generate the random variable Y according to 

P ( Y  = 2 )  = p i ,  2 = 1,. . . , rn . 

2. Given Y = i, generate X from the cdf Gi. 

2.3.4 Acceptance-Rejection Method 

The inverse-transform and composition methods are direct methods in the sense that they 
deal directly with the cdf of the random variable to be generated. The acceptance-rejection 
method, is an indirect method due to Stan Ulam and John von Neumann. It can be applied 
when the above-mentioned direct methods either fail or turn out to be computationally 
inefficient. 

To introduce the idea, suppose that the target pdf f (the pdf from which we want to sam- 
ple) is bounded on some finite interval [a,, b] and is zero outside this interval (see Figure 2.3). 
Let 

c = sup{f(z) : 5 E [a, b ] }  . 

a b 

Figure 2.3 The acceptance-rejection method. 

In this case, generating a random variable 2 - J is straightforward, and it can be done 
using the following acceptance-rejection steps: 

1. Generate X - U(a, b).  

2. Generate Y - U(0, c)  independently of X .  

3. If Y < J ( X ) ,  return 2 = X .  Otherwise, return to Step 1. 

It is important to note that each generated vector ( X ,  Y )  is uniformly distributed over the 
rectangle [a, b] x [0, c ] .  Therefore, the accepted pair ( X ,  Y )  is uniformly distributed under 
the graph f. This implies that the distribution of the accepted values of X has the desired 

We can generalize this as follows. Let g be an arbitrary density such that C#J(Z) = C g(s) 
majorizes f(z) for some constant C (Figure 2.4); that is, @(z) 2 f(s) for all 5. Note that 
of necessity C 3 1. We call g(z) theproposal pdf and assume that it is easy to generate 
random variables from it. 

pdf J .  
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Figure 2.4 The acceptance-rejection method with a majorizing function 4. 

The acceptance-rejection algorithm can be written as follows: 

Algorithm 2.3.5 (Acceptance-Rejection Algorithm) 

1. Generate X from g(x). 

2. Generate Y - U(0, Cg(X) ) .  

3. IfY < f (X), return 2 = X .  Otherwise, return to Step 1. 

The theoretical basis of the acceptance-rejection method is provided by the following 
theorem. 

Theorem 2.3.1 The random variable generated according to Algorithm 2.3.5 has the de- 
siredpdf f (z). 

ProoJ Define the following two subsets: 

d = { ( x , y ) : O I y i C g ( z ) }  and  B = { ( x l y ) : O 5 y I f ( z ) } ,  (2.12) 

which represent the areas below the curves Cg(z) and f(z), respectively. Note first that 
Steps 1 and 2 of Algorithm 2.3.5 imply that the random vector ( X ,  Y )  is uniformly dis- 
tributed on a'. To see this, let q(z, y) denote the joint pdf of ( X ,  Y ) ,  and let q(y I z) denote 
the conditional pdf of Y given X = z. Then we have 

(2.13) 

Now Step 2 states that q(y  I z) equals l /(Cg(z)) for y E [0, Cg(x)] and is zero otherwise. 
Therefore, q(z,  y) = C-' for every (2, y) E d. 

Let (X*, Y * )  be the first accepted point, that is, the first one that is in 99. Since the 
vector ( X ,  Y )  is uniformly distributed on 8, then clearly the vector ( X * ,  Y ' )  is uniformly 
distributed on 2. Also, since the area of 99 equals unity, the joint pdf of (X*,  Y ' )  on 99 
equals unity as well. Thus, the marginal pdf of 2 = X' is 

The eficiency of Algorithm 2.3.5 is defined as 

a rea93  1 
a r e a d  C 

P ( ( X ,  Y )  is accepted) = - - - - 

0 

(2.14) 



RANDOM VARIABLE GENERATION 57 

Often, a slightly modified version of Algorithm 2.3.5 is used. Namely, taking into 
account that Y N U(0, C g ( X ) )  in Step 2 is the same as setting Y = U C g ( X ) ,  where 
U - U(O,l), we can write Y < f ( X )  in Step 3 as U < , f (X)/(Cg(X)) .  Thus, the 
modified version of Algorithm 2.3.5 can be rewritten as follows. 

Algorithm 2.3.6 (Modified Acceptance-Rejection Algorithm) 

1. Generate X from g(z). 

2. Generate U from U(0,l)  independently of X .  

3. f l U  < j ( X ) / ( C g ( X ) ) ,  return Z = X. Otherwise, return to Step 1. 

In other words, generate X from g(z) and accept it with probability f ( X ) / ( C g ( X ) ) ;  
otherwise, reject X and try again. 

EXAMPLE 2.5 Example 2.2 (Continued) 

We shall show how to generate a random variable Z from the pdf 

2 2 ,  o < x < 1  
'(.) = { 0 otherwise 

using the acceptance-rejection method. For simplicity, take g(z)  = 1, 0 < z < 1, 
and C = 2. That is, our proposal distribution is simply the uniform distribution on 
[0,1]. In this case, f ( z ) / ( C g ( z ) )  = z and Algorithm 2.3.6 becomes: 

1. Generate X fmm U(0,l). 

2. Generate U from U(0,l) independently of U .  

3. Y U  < X ,  return Z = X. Otherwise, go to Step I .  

Note that this example is merely illustrative, since the inverse-transform method 
handles it efficiently. 
As a consequence of (2.14), the efficiency of the modified acceptance-rejection method 

is again determined by the acceptanceprobabilityp = P(U < f ( X ) / ( C g ( X ) ) )  = P(Y < 
f ( X ) )  = 1/C for each trial ( X ,  U ) .  Since the trials are independent, the number of trials, 
N, before a successful pair (2, U )  occurs has the following geometric distribution: 

with the expected number of trials equal to l /p  = C. 

the proposal density g(z): 
For this method to be of practical interest, the following criteria must be used in selecting 

1. It should be easy to generate a random variable from g(z)  

2. The efficiency, 1 /C,  of the procedure should be large, that is, C should be close to 1 
(which occurs when g(x) is close to j(x)). 
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EXAMPLE2.6 

Generate a random variable 2 from the semicircular density 

Take the proposal distribution to be uniform over [-R,  R], that is, take g(x) = 
1/(2R), -R < x < R a n d  choose C as small as possible such that Cg(x) 2 f (2); 
hence, C = 4 f 7 ~ .  Then Algorithm 2.3.6 leads to the following generation algorithm: 

1. Generate two independent random variables, U1 and U2, from U (0 , l ) .  

2. Use U2 to generate X from g(x) via the inverse-transform method, namely, X = 
(2U2 - 1)R, andcalculate 

3. r fUl  < f(X)/(Cg(X)), which is equivalent to (2Uz - 1)2 < 1 - U:, return 
Z = X = (2U2 - l)R; otherwise, return to Step 1. 

The expected number of trials for this algorithm is C = 4/x, and the efficiency is 
1/C = n/4 0.785. 

2.4 GENERATING FROM COMMONLY USED DISTRIBUTIONS 

The next two subsections present algorithms for generating variables from commonly used 
continuous and discrete distributions. Of the numerous algorithms available (for example, 
[2]), we have tried to select those that are reasonably efficient and relatively simple to 
implement. 

2.4.1 Generating Continuous Random Variables 

2.4. I. 1 Exponential Distribution We start by applying the inverse-transform method 
to the exponential distribution. If X - Exp(X), then its cdf F is given by 

F(X) = 1 - e-Xz, x 2 0 .  (2.16) 

Hence, solving u = F ( z )  in terms of x gives 

1 
F-'(u)  = -- In(1 - u) . x 

Noting that U - U(0, l )  implies 1 - U N U(0, l), we obtain the following algorithm. 

Algorithm 2.4.1 (Generation of an Exponential Random Variable) 

I .  Generate U - U(0, l ) .  

2. Return X = - In U as a random variable from Exp(X). 

There are many alternative procedures for generating variables from the exponential distri- 
bution. The interested reader is referred to [2]. 
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24.7.2 Normal (Gaussian) Distribution If X - N(p, 02) ,  its pdf is given by 

where p, is the mean (or expectation) and o2 the variance of the distribution. 
Since inversion of the normal cdf is numerically inefficient, the inverse-transform method 

is not very suitable for generating normal random variables, and other procedures must be 
devised. We consider only generation from N(0,l) (standard normal variables), since any 
random 2 - N(p, u2) can be represented as 2 = p + uX, where X is from N(0,l). One 
of the earliest methods for generating variables from N(0,l) is the following, developed by 
Box and Miiller. 

Let X and Y be two independent standard normal random variables, so (X, Y )  is a 
random point in the plane. Let ( R ,  0) be the corresponding polar coordinates. The joint 
pdf f R , e  of R and 8 is given by 

This can be seen as follows. Specifying x and y in terms of r and 0 gives 

x = rcos0  and y = r s in0  . 

The Jacobian of this coordinate transformation is 

(2.18) 

cos0 -rs in0 
s in0  rcosB 

az & 

The result now follows from the transformation rule (1.20), noting that the joint pdf of 
X and Y is fx,y(x, y) = & e-(rz+y2)/2. It is not difficult to verify that R and 0 are 
independent, that 0 - U[O, 2 ~ ) ,  and that P( R > T )  = e-r2/2. This means that R has the 
same distribution as a, with V - Exp(l/2). Namely, P ( f l  > v) = P(V > u 2 )  = 

, 71 2 0. Thus, both 0 and R are easy to generate and are transformed via (2.18) 
into independent standard normal random variables. This leads to the following algorithm. 

Algorithm 2.4.2 (Generation of a Normal Random Variable: Box-Miiller Approach) 

e-v2/2 

1. Generate two independent random variables, U1 and U2, f m m  U(0,l). 

2. Return two independent standard normal variables, X and Y ,  via 

x = (-21n ~ l ) ~ / ~  C O S ( ~ T U ~ )  , 
Y = (-2 1n u,) ' /~  s i n ( 2 ~ ~ 2 )  . 

(2.19) 

An alternative generation method for N(0,l) is based on the acceptance-rejection 
method. First, note that in order to generate a random variable Y from N(0, l ) ,  one can 
first generate a positive random variable X from the pdf 

(2.20) 

and then assign to X a random sign. The validity of this procedure follows from the 
symmetry of the standard normal distribution about zero. 
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1.2 

1 
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0.2 

Figure 2.5 Bounding the positive normal density. 

To generate a random variable X from (2.20), we bound f(z) by Cg(z), where g(z) = 
e-" is the pdf of the Exp(1) distribution. The smallest constant C such that f(z) < Cg(z) 
is (see Figure 2.5). The efficiency of this method is therefore 

The acceptance condition, U < f (X)/(Ce-X),  can be written as 
= 0.76. 

u < exp[-(X - 112/2],  (2.21) 

which is equivalent to 

(2.22) 

where X is from Exp(1). Since - 1nU is also from Exp(l) ,  the last inequality can be 
written as 

(2.23) (V2 - 
2 '  K 2  

where Vl = - In U and V2 = X are independent and both Exp(1) distributed. 

2.4.7.3 Gamma Distribution If X N G a m m a ( a ,  A) then its pdf is of the form 

5'1- 1 - A s  

rYQ) , 2 2 0 .  f (x) = (2.24) 

The parameters a > 0 and X > 0 are called the shape and scale parameters, respectively. 
Since X merely changes the scale, it suffices to consider only random variable generation 
of Gamma(cu, 1). In particular, if X - Gamma(&, l), then X/X  - Gamma(&, A) (see 
Exercise 2.16). Because the cdf for the gamma distributions does not generally exist in 
explicit form, the inverse-transform method cannot always be applied to generate random 
variables from this distribution. Alternative methods are thus called for. We discuss one 
such method for the case a 2 1. Let f(z) = za- le -" / r (a )  and $(x) = d ( l  + C Z ) ~ ,  

z > - l / c  and zero otherwise, where c and d are positive constants. Note that $(z) is a 
strictly increasing function. Let Y have density k(y) = f($(y)) $'(y) c1, where c1 is a 
normalization constant. Then X = $(Y)  has density f. Namely, by the transformation 
rule (1.16) 
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We draw Y via the acceptance-rejection method, using the standard normal distribution 
as our proposal distribution. We choose c and d such that k(y) < Ccp(y), with C > 1 
close to 1 ,  where cp is the pdf of the N ( 0 , l )  distribution. To find such c and d, first write 
k(y) = c2 eh(y), where some algebra will show that 

h(y)  = (1 - 3 a )  ln(1 + cy)  - d (1 + C Y ) ~  + d 

(Note that h(0) = 0.) Next, a Taylor series expansion of h(y) around 0 yields 

1 
h(y) = c (- 1 - 3 d + 3 (Y) y - - c2 (-1 + 6 d + 3 a)  y2 + 0(y3) 2 

This suggests taking c and d such that the coefficients of y and y2 in the expansion above 
are 0 and - 1/2, respectively, as in the exponent of the standard normal density. This gives 
d = a - 1 / 3  and c = 1. It is not difficult to check that indeed 

3 4  

1 1 
2 C 

h(y) < - -y2 forall y > - - ,  

so that eh (y )  6 e- i Y 2 ,  which means that k(y) is dominated by cz& ~ ( y )  for all y. Hence, 
the acceptance-rejection method for drawing from Y - k is as follows: Draw 2 - N(0,l) 
and U - U(0, l )  independently. If 

c2 eh(') 
C2&cp(Z) ' 

U <  

or equivalently, if 

then return Y = 2; otherwise, repeat (we set h ( 2 )  = -co if 2 < -l/c). The efficiency 
of this method, S-"Il, eh(y)dy/ s-", e-TY dy, is greater than 0.95 for all values of a 2 1 .  
Finally, we complete the generation of X by taking X = $(Y) .  Summarizing, we have 
the following algorithm [8]. 

Algorithm 2.4.3 (Sampling from the Gamma(a, 1) Distribution (a 2 1)) 

1 2  

I .  Set d = Q - 1/3  andc = l / &  

2. Generate 2 - N ( 0 , l ) .  

3.  Generate U - U(0,l).  

4. Is2 > - l / c a n d l n  U < h ( 2 )  + ;Z2, return X = d ( 1  + c Z ) ~ ;  otherwise, go back 
to Step 2.  

For the case where Q < 1, one can use the fact that if X - Garnrna(1 + a,  1 )  and 
U - U(0, l )  are independent, then XU' /"  - Garnrna(a, 1); see Problem 2.17. 

A gamma distribution with an integer shape parameter, say a = m, is also called an 
Erlang distribution, denoted Erl(m, A). In this case, X can be represented as the sum 
of iid exponential random variables Y,. That is, X = cEl Yi, where the { Y , }  are iid 
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exponential variables, each with mean 1/X;  see Example 1.9. Using Algorithm 2.4.1, we 
can write Y, = -+ In U,, whence 

l r n  l r n  x = - - E l n u ,  = --1nJJui. 
1=1 

x 
a=1 

x 
Equation (2.25) suggests the following generation algorithm. 

Algorithm 2.4.4 (Generation of an Erlang Random Variable) 

1. Generate iidrandom variables U1,.  . . , Urnfrom U(0,l). 

2. Return X = - U,.  

2.4.7.4 Beta Distribution If X - Beta(cy, D), then its pdf is of the form 

(2.25) 

(2.26) 

Both parameters cy and /3 are assumed to be greater than 0. Note that Beta( 1, 1) is simply 
the U(0,l) distribution. 

To sample from the beta distribution, consider first the case where either (Y or p equals 
1. In that case, one can simply use the inverse-transform method. For example, for p = 1, 
the Beta(cY, 1) pdf is 

and the corresponding cdf becomes 
f(2) = m a - 1 ,  

F ( z )  = za, 

0 < 2 < 1 , 

0 < z < 1.  

Thus, a random variable X can be generated from this distribution by drawing U - U (0 , l )  
and returning X = U1Ia .  

A general procedure for generating a Be ta (a ,  p)  random variable is based on the fact 
that if Y1 - G a m m a ( a ,  l), Y2 - Gamma@, l ) ,  and Y1 and Y2 are independent, then 

is distributed Beta(cu, a). The reader is encouraged to prove this assertion (see Prob- 
lem 2.18). The corresponding algorithm is as follows. 

Algorithm 2.4.5 (Generation of a Beta Random Variable) 

1. Generate independently Y1 - Gamma(cu, 1) andY2 - Gamma(P ,  1). 

2. Return X = Yl/(Yl + Y2) as a random variable from Beta(cu, p). 
For integer Q: = m and p = n ,  another method may be used, based on the theory of 

order statistics. Let U l ,  . . . , Urn+n-l be independent random variables from U(0,l). Then 
the m-th order statistic, U(,), has a Beta(m,  n)  distribution. This gives the following 
algorithm. 

Algorithm 2.4.6 (Generation of a Beta Random Variable with Integer Parameters 
(Y = rn and /3 = n) 

I .  Generate m + n - 1 iid random variables U1, .  . . , Urn+,,-1from U(0,l). 

2. Return the m-th order statistic, U(rn),  as a random variable from Beta (m,  n ) .  

It can be shown that the total number of comparisons needed to find U(m)  is ( m / 2 ) ( m  + 
2 n  - l), so that this procedure loses efficiency for large m and n. 
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- 
- I - 

2.4.2 Generating Discrete Random Variables 

24.2.7 Bernoulli Distribution If X - Ber(p), its pdf is of the form 

f(x) = pZ(1 - p y ,  x = 0 , l  , (2.27) 

where p is the success probability. Applying the inverse-transform method, one readily 
obtains the following generation algorithm. 

Algorithm 2.4.7 (Generation of a Bernoulli Random Variable) 

I .  Generate U - U(0,l). 

2. rfU < p, return X = 1; otherwise, return X = 0. 

In Figure 2.6, three typical outcomes (realizations) are given for 100 independent 
Bernoulli random variables, each with success parameter p = 0.5. 

- -  

I -  
1 0  20 30 40 50 

I1 I .  I 

Figure 2.6 
The dark bars indicate where a success appears. 

Results of three experiments with 100 independent Bernoulli trials, each with p = 0.5. 

60 70 80 90 100 

I I 

24.2.2 Binomial Distribution If X - Bin(n, p )  then its pdf is of the form 

1 0  20 30 40 50 60 70 80 90 100 - - 

p)"-", Lc = 0 , 1 , .  . . ,n  . (2.28) 

Recall that a binomial random variable X can be viewed as the total number of successes 
in n independent Bernoulli experiments, each with success probability p ;  see Example 1.1. 
Denoting the result of the i-th trial by Xi = 1 (success) or Xi = 0 (failure), we can write 
X = X I  + . . . + X,, with the { X , }  being iid Ber(p) random variables. The simplest 
generation algorithm can thus be written as follows. 

Algorithm 2.4.8 (Generation of a Binomial Random Variable) 

1. Generate iidrandom variables X I , .  . . , X ,  from Ber(p). 

2. Return X = x:=l X ,  as a random variable from Bin(n, p ) ,  
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Since the execution time of Algorithm 2.4.8 is proportional to n, one is motivated to use 
alternative methods for large n. For example, one may consider the normal distribution as 
an approximation to the binomial. In particular, by the central limit theorem, as n increases, 
the distribution of X is close to that of Y - N(np, n p ( 1  - p ) ) ;  see (1.26). In fact, the 
cdf of N(7p - 1/2, ,np( l  - p ) )  approximates the cdf of X even better. This is called the 
continuity correction. 

Thus, to obtain a binomial random variable, we generate Y from N ( n p  - 1/2, n p (  1 - p ) )  
and truncate to the nearest nonnegative integer. Equivalently, we generate 2 - N(0,l)  and 
set 

n p -  + ~ d m j }  (2.29) 

as an approximate sample from the Bin(n, p )  distribution. Here La] denotes the integer 
part of a. One should consider using the normal approximation for n p  > 10 with p 2 3, 
and for n(1 - p )  > 10 with p < 3. 

It is worthwhile to note that if Y N Bin(n,p), then n - Y - Bin(n, 1 - p ) .  Hence, to 
enhance efficiency, one may elect to generate X from Bin(n, p )  according to 

Yl - Bin(n,p) 

Y2 - Bin(n,l - p )  i f p >  3 .  
i fp  < 3 x={ 

2.4.2.3 Geometric Distribution If X - G ( p ) ,  then its pdf is of the form 

z = 1 , 2  . . . . f (z) = p (1 - p ) " - l ,  (2.30) 

The random variable X can be interpreted as the number of trials required until the first 
success occurs in a series of independent Bernoulli trials with success parameter p .  Note 
that P(X > m) = (1 - p)". 

We now present an algorithm based on the relationship between the exponential and 
geometric distributions. Let Y - Exp(X), with X such that 1 - p  = e-'. Then X = LY] + 1 
has a G ( p )  distribution. This is because 

P(X > z) = P(LYJ > z - 1) = P(Y 2 z) = e-'" = (1  - p)" . 

Hence, to generate a random variable from G ( p ) ,  we first generate a random variable from 
the exponential distribution with X = - In( 1 - p ) ,  truncate the obtained value to the nearest 
integer, and add 1. 

Algorithm 2.4.9 (Generation of a Geometric Random Variable) 

1. Generate Y - Exp(- ln(1 - p ) ) .  

2. Return X = 1 + LYJ as a random variable from G ( p ) .  

2.4.2.4 Poisson Distribution If X - Poi(X), its pdf is of the form 

e-' X~ 
f(n) = - n = 0 , 1 ,  . . .  , (2.31) 

n! ' 

where X is the rate parameter. There is an intimate relationship between Poisson and 
exponential random variables, highlighted by the properties of the Poisson process; see 
Section 1.1 1. In particular, a Poisson random variable X can be interpreted as the maximal 
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number of iid exponential variables (with parameter A) whose sum does not exceed 1. That 
is. 

(2.32) 

where the { Yt }  are independent and Exp(A) distributed. Since Yj = - 
U, - U(0, l) ,  we can rewrite (2.32) as 

In U j ,  with 

(2.33) 

This leads to the following algorithm. 

Algorithm 2.4.10 (Generating a Poisson Random Variable) 

1. Se tn  = 1 anda = 1. 

2. Generate U,  - U(0,l) andset a = a U,. 

3. I fa  2 e-’, then set ‘n = n + 1 andgo to Step 2. 

4. Otherwise, return X = n - 1 as a random variable from Poi(A). 

It is readily seen that for large A, this algorithm becomes slow (e-A is small for large 
A, and more random numbers, U,, are required to satisfy n,”=, Uj < e-’). Alternative 
approaches use the inverse-transform method with an efficient search (see [2]) or  the alias 
method. 

2.5 RANDOM VECTOR GENERATION 

Suppose that we wish to generate a random vector X = (XI, . . . , X,) from a given n- 
dimensional distribution with pdf f(x) and cdf F ( x ) .  When the components X I , .  . . , X ,  
are independent, the situation is easy: we simply apply the inverse-transform method or 
another generation method of our choice to each component individually. 

EXAMPLE2.7 

We wish to generate uniform random vectors X = (XI, . . . , X,) from the n- 
dimensional rectangle D = ( ( 5 1 , .  . . , x,) : ai < xi < bi,  z = 1,. . . , n}. It is 
clear that this implies that the components of X are independent and uniformly dis- 
tributed: Xi - U(ai ,  b i] ,  i = 1 , .  . . , n. Applying the inverse-transform method to 
Xi, we can write Xi = ai + (bi - ai) Ui, i = 1,. . . , n, where U1,.  . . , U, are iid 
from U(0,l). 
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For dependent random variables XI ,  . . . , X,, we can represent the joint pdf f(x), using 
the product rule (1.4), as 

fh, " ' ,zn) = fl(X1) f 2 b 2  1x1) . . ' fn(z,Izlr~ . ' ,%-l) , (2.34) 

where f l (z1)  is the marginal pdf of X1 and f k ( z k  1x1,. . . , zk-1) is the conditional pdf 
of xk given XI = XI,  X2 = 2 2 ,  . . . , Xk-1 = Xk-1. Thus, one way to generate X is to 
first generate XI, then, given X 1  = 21, generate X2 from fi(z2 I z l ) ,  and so on, until we 
generate X, from fn(sn I z1, . . . , x,-1). 

The applicability of this approach depends, of course, on knowledge of the conditional 
distributions. In certain models, for example Markov models, this knowledge is easily 
obtainable. 

2.5.1 Vector Acceptance-Rejection Method 

The acceptance-rejection Algorithm 2.3.6 is directly applicable to the multidimensional 
case. We need only bear in mind that the random variable X (see Step 2 of Algorithm 2.3.6) 
becomes an n-dimensional random vector X. Consequently, we need a convenient way 
of generating X from the multidimensional proposal pdf g(x), for example, by using the 
vector inverse-transform method. The following example demonstrates the vector version 
of the acceptance-rejection method. 

EXAMPLE2.8 

We want to generate a random vector Z that is uniformly distributed over an irregular 
n-dimensional region G (see Figure 2.7). The algorithm is straightforward: 

I .  Generate a random vector: X, uniformly distributed in W,  where W is a regular 
region (multidimensional hypercube, hyperrectangle, hypersphere, hyperellipsoid, 
etc.). 

2. CfX E G, accept Z = X as the random vector uniformly distributed over G; 
otherwise, return to Step I. 

Figure 2.7 The vector acceptance-rejection method. 

As a special case, let G be the n-dimensional unit ball, that is, G = {x : c, zz < l}, 
and let W be the n-dimensional hypercube (-1 < z, < l}zl. To generate a random 
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vector that is uniformly distributed over the interior of the n-dimensional unit ball, we 
generate a random vector X that is uniformly distributed over W and then accept or reject 
it, depending on whether it falls inside or outside the n-dimensional ball. The corresponding 
algorithm is as follows. 

Algorithm 2.5.1 

I .  Generate Ul, . . . , U, as iid random variables f m m  U (0 , l ) .  

2. Set X I  = 1 - 2111,. . . , X ,  = 1 - 2U,, and R = C:=, X," 

3. I fR  < 1, accept X = ( X , ,  . . . , X,) as the desired vector; otherwise, go to Step 1. 

Remark251 To generate a random vector that is uniformly distributed over the 
suYface of an n-dimensional unit ball - in other words, uniformly over the unit sphere 
{x : El  z: = 1 )  - we need only rewrite Step 3 in Algorithm 2.5.1 as follows: 

3'. I f R <  l , a c c e p t Z = ( Z l ,  . . . ,  Z , , ) w i t h Z , = X , / a ,  i = l ,  . . . ,  n,asthedesired 
vector 

The efficiency of the vector acceptance-rejection method is equal to the ratio 

1 7r+ - _  1 - volume of the hyperball - 
C volume of the hypercube n Zn- l  r ( n / 2 )  ' 

where the volumes of the ball and cube are (n /2 ) r (n /2 )  and 2", respectively. Note that for 
even n (n  = 2m) we have 

= n / 2  

In other words, the acceptance-rejection method grows inefficient in n, and is asymptot- 
ically useless. 

2.5.2 Generating Variables from a Multinormal Distribution 

The key to generating a multivariate normal (or simply multinormal) random vector Z - 
N(p, C) is to write it as Z = p + BX,  where B a matrix such that BBT = C, and X is a 
vector of iid N ( 0 , l )  random variables; see Section 1.9. Note that p = (PI , .  . . , p,,) is the 
mean vector and C is the (n  x n)  covariance matrix of Z. For any covariance matrix C, 
such a matrix B can always be found efficiently using the Cholesky square root method; 
see Section A. 1 of the Appendix. 

The following algorithm describes the generation of a N ( p ,  C) distributed random vector 
Z. 

Algorithm 2.5.2 (Generation of Multinormal Vectors) 

I .  Generate X I ,  . . . , X ,  as iid variables f m m  N ( 0 , l )  

2. Derive the Cholesky decomposition C = BBT. 

3. Return Z = p + BX. 
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2.5.3 Generating Uniform Random Vectors Over a Simplex 

Consider the n-dimensional simplex, 

(2.35) 

W is a simplex on the points 0, e l ,  . . . , e n ,  where 0 is the zero vector and ei is the i-th unit 
vector in R", i = 1 , .  . . , n. Let 5? be a second n-dimensional simplex: 

X = {x : 5, 2 0,  i = 1 , .  . . ,n, z1 6 z2 6 . . .  6 zn 6 1 ) .  

X is a simplex on the points 0, en, en +en- 1, . . . , 1, where 1 is the sum of all unit vectors 
(a vector of 1s). Figure 2.8 illustrates the two-dimensional case. 

0 

Figure 2.8 Simplexes and 57 

Simplex W can be obtained from simplex X by the linear transformation y = Ax with 

1 0 . ' .  0 

A = [; .1, 1:: 0) 

. . .  -1 1 

Now, drawing a vector X = ( X I ,  . . . , X,) according to the uniform distribution on X is 
easy: simply take X i  to be the i-th order statistic of iid random variables U1, . . . , U, from 
U(0, l ) .  Since a linear transformation preserves uniformity, applying matrix A to X yields 
a vector Y that is uniformly distributed on W. 

Algorithm 2.5.3 (Generating a Vector Over a Simplex) 

1. Generate n independent random variables U1, . . . , U, from U(0, l ) .  

2. Sort U1, . . . , U, into the order statistics U( ) , . . . , U(n),  

3. DeJine 
Yl = U(1) , 
y2 = U(2) - U(1) , (2.36) 
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If we define Yn+l = 1 - Cy=l Yi = 1 - ZJ(,,), then the resulting (n + 1)-dimensional 
vector (Yl,. . . , Yn+l) will be uniformly distributed over the set 

that is, over the dominant face of the simplex defined by the points 0 ,  e l , .  . . , e,+l. 
Finally, in order to generate random vectors uniformly distributed over an n-dimensional 

simplex defined by arbitrary vertices, say Z O ,  z1 . . . , z,, we simply generate Y uniformly 
on 9 and apply the linear transformation 

z = CY + zo, 

where C is the matrix whose columns are z1 - ZO, . . . , z, - Z O .  

2.5.4 Generating Random Vectors Uniformly Distributed Over a Unit 
Hyperball and Hypersphere 

Algorithm 2.5.1 and Remark 2.5.1 explain how, using the multidimensional acceptance- 
rejection method, one can generate random vectors that are uniformly distributed over an 
n-dimensional unit hyperball (or simply n-ball). By simply dividing each vector by its 
length, one obtains random vectors that are uniformly distributed over the surface of the 
n-ball, that is, the wsphere. The main advantage of the acceptance-rejection method is 
its simplicity. Its main disadvantage is that the number of trials needed to generate points 
inside the n-ball increases explosively with n. For this reason, it can be recommended only 
for low dimensions (n ,< 5 ) .  An alternative algorithm is based on the following result. 

Theorem 2.5.1 Let X I , .  . . , X, be iid random variables from N(0, l), and let llXll = 
(El"=, X:) t .  Then the vector 

(2.37) 

is distributed uniformly over the n-sphere {y : I IyI I = 1). 

Proof Note that Y is simply the projection of X = ( X l I .  . . , X,) onto the n-sphere. 
The fact that Y is uniformly distributed follows immediately from the fact that the pdf of 

0 X is spherically symmetrical: fx(x) = ce-IJxl12/2. 

To obtain uniform random variables within the n-ball, we simply multiply the vector Y 
by U'/" ,  where U - U(0, l ) .  To see this, note that for a random vector Z = (21,. . . , Zn) 
that is uniformly distributed over the n-ball, the radius R = llZll satisfies P(R ,< T )  = rn. 
Hence, by the inverse-transform method, we can write R = U1In. This motivates the 
following alternative. 

Algorithm 2.5.4 (Generating Uniform Random Vectors Over the n-Ball) 

1. Generate a random vector X = (XI . . . , X , )  with iid N(0,l) components. 

2. Generate R = U'In, with U - U(0, l ) .  

2. Return Z = RX/JIX(I. 
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2.5.5 Generating Random Vectors Uniformly Distributed Over a 
Hyperellipsoid 

The equation for a hyperellipsoid, centered at the origin, can be written as 

X T C X  = T 2 ,  (2.38) 

where C is a positive definite and symmetric (n  x n) matrix ( x  is interpreted as a column 
vector). The special case where C = I (identity matrix) corresponds to a hypersphere of 
radius T .  Since C is positive definite and symmetric, there exists a unique lower triangular 
matrix B such that C = BBT; see (1.25). We may thus view the set % = {x : xTCx < 
T ’ }  as a linear transformation y = BTx of the n-dimensional ball 9 = {y : y T y  < T ~ } .  

Since linear transformations preserve uniformity, if the vector Y is uniformly distributed 
over the interior of an n-dimensional sphere of radius T ,  then the vector X = (BT)- ’Y is 
uniformly distributed over the interior of a hyperellipsoid (see (2.38)). The corresponding 
generation algorithm is given below. 

Algorithm 2.5.5 (Generating Random Vectors Over the Interior of a Hyperellipsoid) 

1. Generate Y = (Y1, . . . , Yn), uniformly distributed over the n-sphere of radius T. 

2. Calculate the matrix B, satishing C = BBT. 

3. Return X = ( BT)-  ’Y as the required uniform random vector: 

2.6 GENERATING POISSON PROCESSES 

This section treats the generation of Poisson processes. Recall from Section 1.1 1 that 
there are two different (but equivalent) characterizations of a Poisson process { N t ,  t 2 
0).  In the first (see Definition 1.1 l . l ) ,  the process is interpreted as a counting measure, 
where N t  counts the number of arrivals in [0, t ] .  The second characterization is that the 
interarrival times {A,} of { N t ,  t > 0 )  form a renewal process, that is, a sequence of iid 
random variables. In this case the interarrival times have an Exp(X) distribution, and we 
can write Ai = - In U,, where the { U i }  are iid U(0, l )  distributed. Using the second 
characterization, we can generate the arrival times Ti = A1 + . . . + Ai during the interval 
[0, T] as follows. 

Algorithm 2.6.1 (Generating a Homogeneous Poisson Process) 

1. Set TO = 0 and n = 1. 

2. Generate an independent random variable U ,  N U(0,l). 

3. Set T, = Tn-l - 

4. lfTn > T,  stop; otherwise, set n = n -k 1 andgo to Step 2. 

The first characterization of a Poisson process, that is, as a random counting measure, 
provides an alternative way of generating such processes, which works also in the multidi- 
mensional case. In particular (see the end of Section 1.1 l ) ,  the following procedure can be 
used to generate a homogeneous Poisson process with rate X on any set A with “volume” 

In U,  and declare an arrival. 

IAl. 
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Algorithm 2.6.2 (Generating an n-Dimensional Poisson Process) 

1. Generate a Poisson random variable N - Poi(X IAI). 

2. Given N = n, draw n. points independently and uniformly in A. Return these as the 

A nonhomogeneous Poissonprocess is a counting process N = { N t ,  t > 0) for which 
the number of points in nonoverlapping intervals are independent - similar to the ordinary 
Poisson process - but the rate at which points arrive is time dependent. If X(t) denotes 
the rate at time t, the number of points in any interval (b ,  c )  has a Poisson distribution with 
mean s l  A(t) dt. 

Figure 2.9 illustrates a way to construct such processes. We first generate a two- 
dimensional homogeneous Poisson process on the strip { ( t ,  z), t > 0,O < z < A},  with 
constant rate X = max A ( t ) ,  and then simply project all points below the graph of A(t) onto 
the t-axis. 

points of the Poissonprocess. 

f 

Figure 2.9 Constructing a nonhomogeneous Poisson process. 

Note that the points of the two-dimensional Poisson process can be viewed as having a 
time and space dimension. The arrival epochs form a one-dimensional Poisson process with 
rate A, and the positions are uniform on the interval [0, A]. This suggests the following al- 
ternative procedure for generating nonhomogeneous Poisson processes: each arrival epoch 
of the one-dimensional homogeneous Poisson process is rejected (thinned) with probability 
1 - w, where T, is the arrival time of the n-th event. The surviving epochs define the 
desired nonhomogeneous Poisson process. 

Algorithm 2.6.3 (Generating a Nonhomogeneous Poisson Process) 

1. Set t = 0, n = 0 and i = 0. 

2. Increase i by 1. 

3. Generate an independent random variable U, - U(0,l). 

4. Set t = t - 4 In u,. 
5. I f t  > T ,  stop; otherwise, continue. 

6. Generate an independent random variable V, - U(0,l). 

7. IfV, < -"t;"' , increase n by I andset T,, = t. Go to Step 2. 
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2 -  

2.7 GENERATING MARKOV CHAINS AND MARKOV JUMP PROCESSES 

* *  a*aW 

.a * * -  a -  

We now discuss how to simulate a Markov chain X O ,  X1 ,  X2 ,  . . . , X,. To generate a 
Markov chain with initial distribution do) and transition matrix P,  we can use the procedure 
outlined in Section2.5 for dependentrandom variables. That is, first generate X O  from do). 
Then, given X O  = ZO, generate X1 from the conditional distribution of X I  given X O  = ZO; 
in other words, generate X1 from the zo-th row of P. Suppose X 1  = z1. Then, generate 
X2 from the s l -s t  row of P,  and so on. The algorithm for a general discrete-state Markov 
chain with a one-step transition matrix P and an initial distribution vector T ( O )  is as follows: 

Algorithm 2.7.1 (Generating a Markov Chain) 

1. Draw Xofrorn the initialdistribution do), Set t = 0. 

2. Draw Xt+l  from the distribution corresponding to the Xt-th mw of P. 

3. Set t = t + 1 andgo to Step 2. 

- 2 -  

- 4 -  

EXAMPLE 2.9 Random Walk on the Integers 

m a  a s s a w  0 

sla 

0 

Consider the random walk on the integers in Example 1.10. Let X O  = 0 (that is, we 
start at 0). Suppose the chain is at some discrete time t = 0, 1 , 2  . . . in state i. Then, in 
Step 2 of Algorithm 2.7.1, we simply need to draw from a two-point distribution with 
mass p and q at i + 1 and i - 1, respectively. In other words, we draw It N Ber(p) 
and set Xt+l = X t  + 2Zt - 1. Figure 2.10 gives a typical sample path for the case 
where p = q = 1/2. 

6 -  

4 .  

Figure 2.10 Random walk on the integers, with p = q = 1/2. 

2.7.1 Random Walk on a Graph 

As a generalization of Example 2.9, we can associate a random walk with any graph G, 
whose state space is the vertex set of the graph and whose transition probabilities from i to 
j are equal to l/d,, where d, is the degree of i (the number of edges out of i). An important 
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property of such random walks is that they are time-reversible. This can be easily verified 
from Kolmogorov’s criterion (1.39). In other words, there is no systematic “looping”. As 
a consequence, if the graph is connected and if the stationary distribution { m , }  exists - 
which is the case when the graph is finite - then the local balance equations hold: 

Tl p,, = r, PI ,  . (2.39) 

When p, ,  = p, ,  for all i and j ,  the random walk is said to be symmetric. It follows 
immediately from (2.39) that in this case the equilibrium distribution is uniform over the 
state space &. 

H EXAMPLE 2.10 Simple Random Walk on an n-Cube 

We want to simulate a random walk over the vertices of the n-dimensional hypercube 
(or simply n-cube); see Figure 2.1 1 for the three-dimensional case. 

Figure 2.11 
random. 

At each step, one of the three neighbors of the currently visited vertex is chosen at 

Note that the vertices of the n-cube are of the form x = ( 2 1  , . . . , zn), with zi 
either 0 or 1. The set of all 2“ of these vertices is denoted (0, 1)”. We generate a 
random walk { X t ,  t = 0,1,2, .  . .} on (0, l}n as follows. Let the initial state X O  
be arbitrary, say X O  = ( 0 , .  . . , O ) .  Given X t  = ( ~ ~ 1 , .  . . ,ztn). choose randomly a 
coordinate J according to the discrete uniform distribution on the set { 1, . . . , n}. If 
j is the outcome, then replace zjn with 1 - xjn. By doing so we obtain at stage t + 1 

Xt+l = (5tl,...,l-~tj,zt(j+l)r...,5tn) 1 

and so on. 

2.7.2 Generating Markov Jump Processes 

The generation of Markov jump processes is quite similar to the generation of Markov 
chains above. Suppose X = { X t ,  t 2 0 )  is a Markov jump process with transition rates 
{ q E 3 } .  From Section 1.12.5, recall that the Markov jump process jumps from one state to 
another according to a Markov chain Y = { Y,} (thejump chain), and the time spent in each 
state z is exponentially distributed with a parameter that may depend on i. The one-step 
transition matrix, say K ,  of Y and the parameters (9,) of the exponential holding times 
can be found directly from the {qE3}. Namely, q, = C, qV (the sum of the transition rates 
out of i), and K ( i , j )  = q,,/9, for i # j (thus, the probabilities are simply proportional to 
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the rates). Note that K ( i ,  i) = 0. Defining the holding times as A1, A z ,  . . . and the jump 
times as 2'1, Tz, . . . , the algorithm is now as follows. 

Algorithm 2.7.2 (Generating a Markov Jump Process) 

1. Initialize TO. Draw Yo from the initial distribution do). Set X O  = YO. Set n = 0. 

2. Draw An+l from Exp(qy,). 

3. Set Tn+l = T,, + An+l.  

4. S e t X t  = Yn f o r T n  6 t < Tn+i. 

5. Draw Yn+l from the distribution corresponding to the Yn-th row of K ,  set 'n = n + 1, 
and go to Step 2. 

2.8 GENERATING RANDOM PERMUTATIONS 

Many Monte Carlo algorithms involve generating random permutations, that is, random 
ordering of the numbers 1 ,2 ,  . . . , n, for some fixed n. For examples of interesting problems 
associated with the generation of random permutations, see, for instance, the traveling 
salesman problem in Chapter 6, the permanent problem in Chapter 9, and Example 2.1 1 
below. 

Suppose we want to generate each of the n! possible orderings with equal probability. 
We present two algorithms that achieve this. The first one is based on the ordering of a 
sequence of n uniform random numbers. In the second, we choose the components of the 
permutation consecutively. The second algorithm is faster than the first. 

Algorithm 2.8.1 (First Algorithm for Generating Random Permutations) 

1. Generate U1, U2,. . . , Un N U(0, l )  independently 

2. Arrange these in increasing order. 

3. The indices of the successive ordered values form the desiredpermutation. 

For example, let n = 4 and assume that the generated numbers (U1,  Uz,  U,, U4) are 
(0.7,0.3,0.5,0.4). Since (UZ, U4, U3,Ul)  = (0.3,0.4,0.5,0.7) is the ordered sequence, 
the resulting permutation is (2 ,4 ,3 ,1) .  The drawback of this algorithm is that it requires 
ordering a sequence of n random numbers, which requires n Inn comparisons. 

As we mentioned, the second algorithm is based on the idea of generating the components 
of the random permutation one by one. The first component is chosen randomly (with 
equal probability) from 1 , .  . . , n. Next, the second component is randomly chosen from 
the remaining numbers, and so on. For example, let n = 4. We draw component 1 from 
the discrete uniform distribution on { 1,2,3,4}.  Suppose we obtain 2. Our permutation 
is thus of the form (2, ., ., .). We next generate from the three-point uniform distribution 
on { 1,3 ,4} .  Assume that 1 is chosen. Thus, our intermediate result for the permutation 
is (2 ,1 ,  ., .). Finally, for the third component, choose either 3 or 4 with equal probability. 
Suppose we draw 4. The resulting permutation is (2 ,1 ,4 ,3) .  Generating a random variable 
X from a discrete uniform distribution on { 5 1 ,  . . . , zk} is done efficiently by first generating 
I = [k U J  + 1, with U - U(0, l )  and returning X = 51. Thus, we have the following 
algorithm. 
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Algorithm 2.8.2 (Second Algorithm for Generating Random Permutations) 

I .  S e t 9 = { 1 ,  . . . ,  n } . L e t i = l .  

2. Generate Xi from the discrete uniform distribution on 9. 

3. Remove Xi from 9. 

4. Set i = i + 1. I f i  < n, go to Step 2. 

5. Deliver (XI, . . . , X,) as the desiredpermutation. 

Remark 2.8.1 To further improve the efficiency of the second random permutation algo- 
rithm, we can implement it as follows: Let p = (pi,. . . , p n )  be a vector that stores the 
intermediate results of the algorithm at the i-th step. Initially, let p = (1, . . . , n). Draw X 1  
by uniformly selecting an index I E { 1, . . . , n} ,  and return X1 = p l .  Then swap X1 and 
p ,  = n. In the second step, draw X 2  by uniformly selecting I from { 1, . . . , n - l}, return 
X, = p1 and swap it with pn-l, and so on. In this way, the algorithm requires the generation 
of only n uniform random numbers (for drawing from { 1,2, . . . , k } ,  k = n, n - 1, . . . ,2) 
and n swap operations. 

EXAMPLE 2.11 Generating a Random Tour in a Graph 

Consider a weighted graph G with n nodes, labeled 1,2, . . . , n. The nodes repre- 
sent cities, and the edges represent the roads between the cities. The problem is to 
randomly generate a tour that visits all the cities exactly once except for the starting 
city, which is also the terminating city. Without loss of generality, let us assume that 
the graph is complete, that is, all cities are connected. We can represent each tour 
via a permutation of the numbers 1, . . . , n, For example, for n = 4, the permutation 
(1,3,2,4) represents the tour 1 -+ 3 -+ 2 -+ 4 -+ 1. 

More generally, we represent a tour via a permutation x = (21, . . . , 5,) with 2 1  = 
1, that is, we assume without loss of generality that we start the tour at city number 1. 
To generate a random tour uniformly on X, we can simply apply Algorithm 2.8.2. 
Note that the number of all possible tours of elements in the set of all possible tours 
X is 

IZI = (n  - l)! (2.40) 

PROBLEMS 

2.1 
uniform distribution with pdf 

Apply the inverse-transform method to generate a random variable from the discrete 

z = 0,1, .  . . , n  

0 otherwise. f(x) = 

2.2 
method. 

2.3 
method. 

Explain how to generate from the Beta(1, p) distribution using the inverse-transform 

Explain how to generate from the Weib(cu, A) distribution using the inverse-transform 
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2.4 
transform method. 

2.5 

Explain how to generate from the Pareto(cY, A) distribution using the inverse- 

Many families of distributions are of location-scale type. That is, the cdf has the 
form 

where p is called the location parameter and a the scale parameter, and FO is a fixed cdf 
that does not depend on p and u. The N(p, u2)  family of distributions is a good example, 
where FO is the standard normal cdf. Write F ( x ;  p,  a) for F(x) .  Let X - FO (that is, 
X - F ( x ;  0, l ) ) .  Prove that Y = p + u X - F ( z ;  pl a). Thus, to sample from any cdf in 
a location-scale family, it suffices to know how to sample from Fo. 

2.6 Apply the inverse-transform method to generate random variables from a Laplace 
distribution (that is, a shifted two-sided exponential distribution) with pdf 

2.7 
value distribution, which has cdf 

Apply the inverse-transform method to generate a random variable from the extreme 

2.8 Consider the triangular random variable with pdf 

i f x  < 2 a o r x  2 2b f o  
if 2a < x < a + b 

(2b - X) 
i f a +  b < x < 2b I- (b - a)2 

a) Derive the corresponding cdf F .  
b) Show that applying the inverse-transform method yields 

2 a + ( b - a ) m  i f O < U < $  

26 + (a  - b) d m  
X={  

if < U < 1 . 

2.9 
piecewise-constant pdf 

Present an inverse-transform algorithm for generating a random variable from the 

where Ci 0 and xo < X I  < . . . < x,-1 < x, 
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2.10 Let 

where C, 0 and xo < x1 < . . .  < xn-l  < 2,. 

a) Let Fi = xi.,, sz- Cj u du, a = 1, . . . , n. Show that the cdf F satisfies 

Ci 
F ( z ) = F i - l + - ( z Z - x ~ - , ) ,  x i - l  < x < x i ,  i = l ,  . . . ,  n .  

2 

b) Describe an inverse-transform algorithm for random variable generation from 
f ( x ) .  

2.1 1 A random variable is said to have a Cuuchy distribution if its pdf is given by 

(2.41) 

Explain how one can generate Cauchy random variables using the inverse-transform method. 

2.12 If X and Y are independent standard normal random variables, then 2 = X / Y  has 
a Cauchy distribution. Show this. (Hint: first show that if U and V > 0 are continuous 
random variables with joint pdf f u , ~ ,  then the pdf of W = U / V  is given by fw(w) = 

2.13 

2.14 
ing random variables from the following normal (Gaussian) mixture pdf  

J," fu,v(w 'u, .) 'u dv.) 

Verify the validity of the composition Algorithm 2.3.4. 

Using the composition method, formulate and implement an algorithm for generat- 

where cp is the pdf of the standard normal distribution and ( p l r p 2 , p 3 )  = (1/2,1/3,1/6), 
( ~ 1 ,  a2,  ~ 3 )  = (-1,O, 11, and ( b i ,  b2, b3) = (1/4,1,1/2).  

2.15 Verify that C = in Figure 2.5. 

2.16 

2.17 
X U ' / "  - Gamma(cr, 1). Prove this. 

2.18 

Prove that if X - Gamma(&, l),  then X / X  - Gamma(&, A). 

Let X - Gamma(1 + a, 1)  and U - U(0,l) be independent. If a < 1, then 

If Y1 - Gamma(a, l), Y2 - Gamma@, l),  and Yl and Y2 are independent, then 

is Beta(&, p) distributed. Prove this. 

2.19 Devise an acceptance-rejection algorithm for generating a random variable from the 
pdf f given in (2.20) using an Exp(X) proposal distribution. Which X gives the largest 
acceptance probability? 

2.20 The pdf of the truncated exponential distribution with parameter X = 1 is given by 

e-= 
f ( x )  = -> O < x < a .  
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a) Devise an algorithm for generating random variables from this distribution using 
the inverse-transform method. 

b) Construct a generation algorithm that uses the acceptance-rejection method with 
an Exp(X) proposal distribution. 

c) Find the efficiency of the acceptance-rejection method for the cases a = 1, and a 
approaching zero and infinity. 

Let the random variable X have pdf 2.21 

4 ’  O < x < l  
x - $ ,  1 < 2 < 2 .  

f(x) = 

Generate a random variable from f(x), using 
a) the inverse-transform method, 
b) the acceptance-rejection method, using the proposal density 

2.22 Let the random variable X have pdf 

Generate a random variable from , f(z),  using 
a) the inverse-transform method 
b) the acceptance-rejection method, using the proposal density 

8 5 
2 

g ( 5 ) = 2 5 x ’  o < x < -  

2.23 Let X have a truncated geometric distribution, with pdf 

f(x) = cp(1 - p)5-1, 5 = 1 , .  . . , n , 

where c is a normalization constant. Generate a random variable from f (x ) ,  using 
a) the inverse-transform method, 
b) the acceptance-rejection method, with G ( p )  as the proposal distribution. Find the 

2.24 Generate a random variable Y = min,=I,.. .,m max3=l ,. . ,,. { X , j } ,  assuming that 
the variables X,,, i = 1 , .  . . , m, j = 1 , .  . . , T ,  are iid with common cdf F(x) ,  using the 
inverse-transform method. (Hint: use the results for the distribution of order statistics in 
Example 2.3.) 

2.25 Generate 100 Ber(0.2) random variables three times and produce bar graphs similar 
to those in Figure 2.6. Repeat for Ber(0.5). 

2.26 Generate a homogeneous Poisson process with rate 100 on the interval [0,1]. Use 
this to generate a nonhomogeneousPoisson process on the same interval, with rate function 

efficiency of the acceptance-rejection method for R = 2 and R = 00. 

~ ( t )  = 100 sin2(10t), t 2 o . 
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2.27 Generate and plot a realization of the points of a two-dimensional Poisson process 
withrateX = 2onthesquare[0,5]x [0;5]. Howmanypointsfallinthesquare(1,3] x [1,3]? 
How many do you expect to fall in this square? 

2.28 Write a program that generates and displays 100 random vectors that are uniformly 
distributed within the ellipse 

5 z2 + 21 z y + 25 y2 = 9 . 

2.29 Implement both random permutation algorithms in Section 2.8. Compare their 
performance. 

2.30 Consider a random walk on the undirected graph in Figure 2.12. For example, if the 
random walk at some time is in state 5, it will jump to 3,4,  or 6 at the next transition, each 
with probability 1/3. 

1 3 5 

2 4 6 

Figure 2.12 A graph. 

a) Find the one-step transition matrix for this Markov chain. 
b) Show that the stationary distribution is given by 7r = (i, i, g ,  5, i, i). 
c) Simulate the random walk on a computer and verify that in the long run, the 

proportion of visits to the various nodes is in accordance with the stationary 
distribution. 

2.31 Generate various sample paths for the random walk on the integers for p = 1/2 and 
p = 213. 

2.32 Consider the M / M / 1  queueing system of Example 1.13. Let X t  be the number 
of customers in the system at time t .  Write a computer program to simulate the stochastic 
process X = { X,} by viewing X as a Markov jump process, and applying Algorithm 2.7.2. 
Present sample paths of the process for the cases X = 1, p = 2 and X = 10, p = 11. 

Further Reading 

Classical references on random number generation and random variable generation are [3] 
and [2]. Other references include [4], [7], and [ lo]  and the tutorial in [9]. A good new 
reference is [ 11. 
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CHAPTER 3 

SIMULATION OF DISCRETE-EVENT 
SYSTEMS 

Computer simulation has long served as an important tool in a wide variety of disciplines: 
engineering, operations research and management science, statistics, mathematics, physics, 
economics, biology, medicine, engineering, chemistry, and the social sciences. Through 
computer simulation, one can study the behavior of real-life systems that are too difficult 
to examine analytically. Examples can be found in supersonic jet flight, telephone com- 
munications systems, wind tunnel testing, large-scale battle management (e.g., to evaluate 
defensive or offensive weapons systems), or maintenance operations (e.g., to determine the 
optimal size of repair crews), to mention a few. Recent advances in simulation methodolo- 
gies, software availability, sensitivity analysis, and stochastic optimization have combined 
to make simulation one of the most widely accepted and used tools in system analysis and 
operations research. The sustained growth in size and complexity of emerging real-world 
systems (e.g., high-speed communication networks and biological systems) will undoubt- 
edly ensure that the popularity of computer simulation continues to grow. 

The aim of this chapter is to provide a brief introduction to the art and science of computer 
simulation, in particular with regard to discrete-event systems. The chapter is organized 
as follows: Section 3.1 describes basic concepts such as systems, models, simulation, and 
Monte Carlo methods. Section 3.2 deals with the most fundamental ingredients of discrete- 
event simulation, namely, the simulation clock and the event list. Finally, in Section 3.3 we 
further explain the ideas behind discrete-event simulation via a number of worked examples. 

Simulation and the Monte Carlo Method, Second Edition. By R.Y. Rubinstein and D. P. Kroese 
Copyright @ 2007 John Wiley & Sons, Inc. 
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3.1 SIMULATION MODELS 

By a system we mean a collection of related entities, sometimes called components or 
elements, forming a complex whole. For instance, a hospital may be considered a system, 
with doctors, nurses, and patients as elements. The elements possess certain characteristics 
or attributes that take on logical or numerical values. In our example, an attribute may be 
the number of beds, the number of X-ray machines, skill level, and so on. Typically, the 
activities of individual components interact over time. These activities cause changes in the 
system’s state. For example, the state of a hospital’s waiting room might be described by 
the number of patients waiting for a doctor. When a patient arrives at the hospital or leaves 
it, the system jumps to a new state. 

We shall be solely concerned with discrete-eventsystems, to wit, those systems in which 
the state variables change instantaneously through jumps at discrete points in time, as op- 
posed to continuous systems, where the state variables change continuously with respect 
to time. Examples of discrete and continuous systems are, respectively, a bank serving 
customers and a car moving on the freeway. In the former case, the number of waiting 
customers is a piecewise constant state variable that changes only when either a new cus- 
tomer arrives at the bank or a customer finishes transacting his business and departs from 
the bank; in the latter case, the car’s velocity is a state variable that can change continuously 
over time. 

The first step in studying a system is to build a model from which one can obtain 
predictions concerning the system’s behavior. By a model we mean an abstraction of 
some real system that can be used to obtain predictions and formulate control strategies. 
Often such models are mathematical (formulas, relations) or graphical in nature. Thus, the 
actual physical system is translated - through the model - into a mathematical system. 
In order to be useful, a model must necessarily incorporate elements of two conflicting 
characteristics: realism and simplicity. On the one hand, the model should provide a 
reasonably close approximation to the real system and incorporate most of the important 
aspects of the real system. On the other hand, the model must not be so complex as to 
preclude its understanding and manipulation. 

There are several ways to assess the validity of a model. Usually, we begin testing 
a model by reexamining the formulation of the problem and uncovering possible flaws. 
Another check on the validity of a model is to ascertain that all mathematical expressions 
are dimensionally consistent. A third useful test consists of varying input parameters and 
checking that the output from the model behaves in a plausible manner. The fourth test is 
the so-called retrospective test. It involves using historical data to reconstruct the past and 
then determining how well the resulting solution would have performed if it had been used. 
Comparing the effectiveness of this hypothetical performance with what actually happens 
then indicates how well the model predicts reality. However, a disadvantage of retrospective 
testing is that it uses the same data as the model. Unless the past is a representative replica 
of the future, it is better not to resort to this test at all. 

Once a model for the system at hand has been constructed, the next step is to derive a 
solution from this model. To this end, both analytical and numerical solutions methods 
may be invoked. An analytical solution is usually obtained directly from its mathematical 
representation in the form of formulas. A numerical solution is generally an approximation 
via a suitable approximation procedure. Much of this book deals with numerical solution 
and estimation methods obtained via computer simulation. More precisely, we use stochas- 
tic computer simulation - often called Monte Carlo simulation - which includes some 
randomness in the underlying model, rather than deterministic computer simulation. The 
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term Monte Curlo was used by von Neumann and Ulam during World War I1 as a code 
word for secret work at Los Alamos on problems related to the atomic bomb. That work 
involved simulation of random neutron diffusion in nuclear materials. 

Naylor et al. [7] define simulation as follows: 
Simulation is a numerical technique for conducting experiments on a digital computer: 
which involves certain types of mathematical and logical models that describe the 
behavior of business or economic systems (or some component thereon over extended 
period ofreal time. 

The following list of typical situations should give the reader some idea of where simu- 
lation would be an appropriate tool. 

0 The system may be so complex that a formulation in terms of a simple mathematical 
equation may be impossible. Most economic systems fall into this category. For 
example, it is often virtually impossible to describe the operation of a business firm, 
an industry, or an economy in terms of a few simple equations. Another class of 
problems that leads to similar difficulties is that of large-scale, complex queueing 
systems. Simulation has been an extremely effective tool for dealing with problems 
of this type. 

Even if a mathematical model can be formulated that captures the behavior of some 
system of interest, it may not be possible to obtain a solution to the problem embodied 
in the model by straightforward analytical techniques. Again, economic systems and 
complex queueing systems exemplify this type of difficulty. 

0 Simulation may be used as a pedagogical device for teaching both students and 
practitioners basic skills in systems analysis, statistical analysis, and decision making. 
Among the disciplines in which simulation has been used successfully for this purpose 
are business administration, economics, medicine, and law. 

The formal exercise of designing a computer simulation model may be more valuable 
than the actual simulation itself. The knowledge obtained in designing a simulation 
study serves to crystallize the analyst’s thinking and often suggests changes in the 
system being simulated. The effects of these changes can then be tested via simulation 
before implementing them in the real system. 

0 Simulation can yield valuable insights into the problem of identifying which variables 
are important and which have negligible effects on the system, and can shed light on 
how these variables interact; see Chapter 7. 

0 Simulation can be used to experiment with new scenarios so as to gain insight into 
system behavior under new circumstances. 

Simulation provides an in vitro lab, allowing the analyst to discover better control of 
the system under study. 

0 Simulation makes it possible to study dynamic systems in either real, compressed, or 
expanded time horizons. 

Introducing randomness in a system can actually help solve many optimization and 
counting problems; see Chapters 6 - 9. 



84 SIMULATION OF DISCRETE-EVENT SYSTEMS 

As a modeling methodology, simulation is by no means ideal. Some of its shortcomings 
and various caveats are: Simulation provides statistical estimates rather than exact charac- 
teristics and performance measures of the model. Thus, simulation results are subject to 
uncertainty and contain experimental errors. Moreover, simulation modeling is typically 
time-consuming and consequently expensive in terms of analyst time. Finally, simulation 
results, no matter how precise, accurate, and impressive, provide consistently useful infor- 
mation about the actual system only if the model is a valid representation of the system 
under study. 

3.1 .I Classification of Simulation Models 

Computer simulation models can be classified in several ways: 

I .  Static versus Dynamic Models. Static models are those that do not evolve over time 
and therefore do not represent the passage of time. In contrast, dynamic models 
represent systems that evolve over time (for example, traffic light operation). 

2.  Deterministic versus Stochastic Models. If a simulation model contains only deter- 
ministic (i.e., nonrandom) components, it is called deterministic. In a deterministic 
model, all mathematical and logical relationships between elements (variables) are 
fixed in advance and not subject to uncertainty. A typical example is a complicated 
and analytically unsolvable system of standard differential equations describing, say, 
a chemical reaction. In contrast, a model with at least one random input variable 
is called a stochastic model. Most queueing and inventory systems are modeled 
stochastically. 

3 .  Continuous versus Discrete Simulation Models. In discrete simulation models the 
state variable changes instantaneously at discrete points in time, whereas in contin- 
uous simulation models the state changes continuously over time. A mathematical 
model aiming to calculate a numerical solution for a system of differential equations 
is an example of continuous simulation, while queueing models are examples of 
discrete simulation. 

This book deals with discrete simulation and in particular with discrete-event simulation 
(DES) models. The associated systems are driven by the occurrence o f  discrete events, 
and their state typically changes over time. We shall further distinguish between so-called 
discrete-event static systems (DESS) and discrete-event dynamic systems (DEDS). The 
fundamental difference between DESS and DEDS is that the former do not evolve over 
time, whereas the latter do. A queueing network is a typical example of a DEDS. A DESS 
usually involves evaluating (estimating) complex multidimensional integrals or sums via 
Monte Carlo simulation. 

Remark 3.1.1 (Parallel Computing) Recent advances in computer technology have en- 
abled the use ofparallel or distributedsimulation, where discrete-event simulation is carried 
out on multiple linked (networked) computers, operating simultaneously in a cooperative 
manner. Such an environment allows simultaneous distribution of different computing tasks 
among the individual processors, thus reducing the overall simulation time. 
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3.2 SIMULATION CLOCK AND EVENT LIST FOR DEDS 

Recall that DEDS evolve over time. In particular, these systems change their state only at a 
countable number of time points. State changes are triggered by the execution of simulation 
events occurring at the corresponding time points. Here, an event is a collection of attributes 
(values, types, flags, etc.), chief among which are the event occurrence time - or simply 
event time - the event type, and an associated algorithm to execute state changes. 

Because of their dynamic nature, DEDS require a time-keeping mechanism to advance 
the simulation time from one event to another as the simulation evolves over time. The 
mechanism recording the current simulation time is called the simulation clock. To keep 
track of events, the simulation maintains a list of all pending events. This list is called the 
event list, and its task is to maintain all pending events in chronological order. That is, 
events are ordered by their time of occurrence. In particular, the most imminent event is 
always located at the head of the event list. 

Clock 

Event List 

Figure 3.1 The advancement of the simulation clock and event list. 

The situation is illustrated in Figure 3.1. The simulation starts by loading the initial 
events into the event list (chronologically ordered), in this case four events. Next, the most 
imminent event is unloaded from the event list for execution, and the simulation clock is 
advanced to its occurrence time, 1.234. After this event is processed and removed, the 
clock is advanced to the next event, which occurs at time 2.354. In the course of executing 
a current event, based on its type, the state of the system is updated, and future events are 
possibly generated and loaded into (or deleted from) the event list. In the above example, 
the third event - of type C ,  occurring at time 3.897 - schedules a new event of type E at 
time 4.23 1. 

The process of unloading events from the event list, advancing the simulation clock, and 
executing the next most imminent event terminates when some specific stopping condition 
is met - say, as soon as a prescribed number of customers departs from the system. The 
following example illustrates this next-event time advance approach. 
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EXAMPLE3.1 

Money enters a certain bank account in two ways: via frequent small payments and 
occasional large payments. Suppose that the times between subsequent frequent pay- 
ments are independent and uniformly distributed on the continuous interval [7, 101 (in 
days); and, similarly, the times between subsequent occasional payments are indepen- 
dent and uniformly distributed on [25,35]. Each frequent payment is exponentially 
distributed with a mean of 16 units (say, one unit is $1000), whereas occasional pay- 
ments are always of size 100. It is assumed that all payment intervals and sizes are 
independent. Money is debited from the account at times that form a Poisson process 
with rate 1 (per day), and the amount debited is normally distributed with mean 5 and 
standard deviation 1. Suppose that the initial amount of money in the bank account 
is 150 units. 

Note that the state of the system -the account balance - changes only at discrete 
times. To simulate this DEDS, one need only keep track of when the next frequent 
and occasional payments occur, as well as the next withdrawal. Denote these three 
event types by 1.2, and 3, respectively. We can now implement the event list simply 
as a 3 x 2 matrix, where each row contains the event time and the event type. After 
each advance of the clock, the current event time t and event type i are recorded and 
the current event is erased. Next, for each event type i = 1 , 2 , 3  the same type of 
event is scheduled using its corresponding interval distribution. For example, if the 
event type is 2, then another event of type 2 is scheduled at a time t + 25 + 10 U, 
where U - U[O, 11. Note that this event can be stored in the same location as the 
current event that was just erased. However, it is crucial that the event list is then 
resorted to put the events in chronological order. 

A realization of the stochastic process { X t ,  0 < t < 400}, where X t  is the account 
balance at time t ,  is given in Figure 3.2, followed by a simple Matlab implementation. 

200 

150 - 
0 
0 0 

tft 
7 

x 100 
8 
m 

n = 50 

Y 

- m 

z 
0 ::I: 

Figure 3.2 A realization of the simulated account balance process. 
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Matlab Program 
clear all; 
T = 400; 
x = 150; %initial mount of money. 
xx = C1501; tt = LO]; 
t=O; 
ev-list = inf*ones(3,2); %record time, type 
ev-list(1, :) = [7 + 3*rand, 11 ; %schedule type 1 event 
ev-list(2, :) = [25 + lO*rand,21 ; %schedule type 2 event 
ev-list (3, : ) = [-log(rand) ,3] ; %schedule type 3 event 
ev-list = sortrows(ev-list,l); % sort event list 
while t < T 

t = ev-list(l,l); 
ev-type = ev-list (1,2) ; 
switch ev-type 

case 1 
x = x + 16*-log(rand); 
ev-list(1, : )  = [7 + 3*rand + t, 11 ; 

x = x + 100; 
ev-list (1, :) = [25 + 10*rand + t, 21 ; 

x = x - (5 + randn); 
ev-list(1, :) = [-log(rand) + t, 31 ; 

case 2 

case 3 

end 
ev-list = sortrows(ev-list,l); % sort event list 
xx = [xx,xl ; 
tt = [tt,tl; 

end 
plot (tt ,xx) 

3.3 DISCRETE-EVENT SIMULATION 

As mentioned, DES is the standard framework for the simulation of a large class of models 
in which the system state (one or more quantities that describe the condition of the system) 
needs to be observed only at certain critical epochs (event times). Between these epochs, the 
system state either stays the same or changes in a predictable fashion. We further explain 
the ideas behind DES via two more examples. 

3.3.1 Tandem Queue 

Figure 3.3 depicts a simple queueing system, consisting of two queues in tandem, called a 
(Jackson) tandem queue. Customers arrive at the first queue according to a Poisson process 
with rate A. The service time of a customer at the first queue is exponentially distributed 
with rate 111. Customers who leave the first queue enter the second one. The service time in 
the second queue has an exponential distribution with rate p z .  All interarrival and service 
times are independent. 

Suppose we are interested in the number of customers, X t  and Yt, in the first and second 
queues, respectively, where we regard a customer who is being served as part of the queue. 
Figure 3.4 depicts a typical realization of the queue length processes { X t ,  t > 0 )  and 
{ Yt,  t > 0}, obtained via DES. 
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3 

2.5 1 

Queue 1 Queue 2 L-m 
Figure 3.3 A Jackson tandem queue. 
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t 

Figure 3.4 A realization of the queue length processes ( X t  , t 2 0) and (Yi, t 2 0). 

Before we discuss how to simulate the queue length processes via DES, observe that, 
indeed, the system evolves via a sequence of discrete events, as illustrated in Figure 3.5. 
Specifically, the system state ( X t ,  K )  changes only at times of an arrival at the first queue 
(indicated by A), a departure from the first queue (indicated by Dl), and a departure from 
the second queue (D2). 

A D I A A  D2 D1 A 
I I I I  I I I 

I I P t  

Figure 3.5 
departure from the second queue). 

A sequence of discrete-events (A = anival, D1 = departure from the first queue, D2 = 

There are two fundamental approaches to DES, called the event-oriented and pmcess- 
oriented approaches. The pseudocode for an event-oriented implementation of the tandem 
queue is given in Figure 3.6. The program consists of a main subroutine and separate 
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subroutines for each event. In addition, the program maintains an ordered list of scheduled 
current and future events, the so-called event list. Each event in the event list has an event 
type (‘A’, ‘Dl’, and ‘D2’) and an event time (the time at which the arrival or departure will 
occur). The role of the main subroutine is primarily to progress through the event list and 
to call the subroutines that are associated with each event type. 

Main 
1: initialize: Let t = 0, x = 0 and y = 0. 
2: Schedule ‘A’ at t + Exp(X). 
3: while TRUE 
4: 
5: 
6: switch current event type 
I :  case ‘A’: Call Arrival 
8: case ‘Dl’: Call Departurel 
9: case ‘D2’: Call Departure2 
10: end 
I I :  
12: end 

Get the first event in the event list 
Let t be the time of this (now current) event 

Remove the current event from the event list and sort the event list. 

Figure 3.6 Main subroutine of an event-oriented simulation program. 

The role of the event subroutines is to update the system state and to schedule new events 
into the event list. For example, an arrival event at time t will trigger another arrival event 
at time t + 2, with 2 - Exp(X). We write this, as in the Main routine, in shorthand as 
t + Exp(X). Moreover, if the first queue is empty, it will also trigger a departure event from 
the first queue at time t + Exp(p1). 

Arrival 

Schedule ‘A’ 

i f x = O  
at 1: + Exp(X) 

Schedule ‘Dl’ 
at + EXP(P1) 

end 
Z = Z + l  

Departurel 

z = x - l  
i f x # O  

Schedule ‘D 1 ’ 
at t + Exp(p1) 

end 
i f x = O  

Schedule ‘D2’ 
at t + EXP(PZ) 

end 
y = y + l  

Departure2 r- at t + Exp(p2) 

y = y - 1  
i f y # O  

Schedule ‘D2’ 

Figure 3.7 Event subroutines of an event-oriented simulation program 

The process-oriented approach to DES is much more flexible than the event-oriented ap- 
proach. A process-oriented simulation program closely resembles the actual processes that 
drive the simulation. Such simulation programs are invariably written in an object-oriented 
programming language, such as Java or C++. We illustrate the process-oriented approach 
via our tandem queue example. In contrast to the event-oriented approach, customers, 
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servers, and queues are now actual entities, or objects in the program, that can be manip- 
ulated. The queues are passive objects that can contain various customers (or be empty), 
and the customers themselves can contain information such as their arrival and departure 
times. The servers, however, are active objects (processes), which can interact with each 
other and with the passive objects. For example, the first server takes a client out of the 
first queue, serves the client, and puts her into the second queue when finished, alerting the 
second server that a new customer has arrived if necessary. To generate the arrivals, we 
define a generator process that generates a client, puts it in the first queue, alerts the first 
server if necessary, holds for a random interarrival time (we assume that the interarrival 
times are iid), and then repeats these actions to generate the next client. 

As in the event-oriented approach, there exists an event list that keeps track of the current 
and pending events. However, this event list now containspmcesses. The process at the top 
of the event list is the one that is currently active. Processes may ACTIVATE other processes 
by putting them at the head of the event list. Active processes may HOLD their action for a 
certain amount of time (such processes are put further up in the event list). Processes may 
PASSIVATE altogether (temporarily remove themselves from the event list). Figure 3.8 
lists the typical structure of a process-oriented simulation program for the tandem queue. 

Main 

1: initialize: create the two queues, the two servers and the generator 
2: ACTIVATE the generator 
3: HOLD(duration of simulation) 
A .  STOP 

Generator 

I :  while TRUE 
2: generate new client 
3: put client in the first queue 
4: if server 1 is idle 
5: ACTIVATE server 1 
6: end 
7: HOLD(interarriva1 time) 
8: end 

Server 1 

I :  while TRUE 
2: 
3: PASSIVATE 
4: else 
5: 

6: HOLD( service time) 
7: end 
8:  put customer in queue 2 
9: if server 2 is idle 
10: ACTIVATE server 2 
11: end 
12: end 

if waiting room is empty 

get first customer from waiting 
room 

Figure 3.8 The structure of a process-oriented simulation program for the tandem queue. The 
Server 2 process is similar to the Server 1 process, with lines 8-1 1 replaced with "remove customer 
from system". 

The collection of statistics, for example the waiting time or queue length, can be done by 
different objects and at various stages in the simulation. For example, customers can record 
their arrival and departure times and report or record them just before they leave the system. 
There are many freely available object-oriented simulation environments nowadays, such 
as SSJ, J-Sim, and C++Sim, all inspired by the pioneering simulation language SIMULA. 
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3.3.2 Repairman Problem 

Imagine n machines working simultaneously. The machines are unreliable and fail from 
time to time. There are rn < n identical repairmen, who can each work only on one machine 
at a time. When a machine has been repaired, it is as good as new. Each machine has a 
fixed lifetime distribution and repair time distribution. We assume that the lifetimes and 
repair times are independent of each other. Since the number of repairmen is less than the 
number of machines, it can happen that a machine fails and all repairmen are busy repairing 
other failed machines. In that case, the failed machine is placed in a queue to be served by 
the next available repairman. When upon completion of a repair job a repairman finds the 
failed machine queue empty, he enters the repair pool and remains idle until his service is 
required again. We assume that machines and repairmen enter their respective queues in a 
first-in-first-out (FIFO) manner. The system is illustrated in Figure 3.9 for the case of three 
repairmen and five machines. 

Figure 3.9 The repairman system. 

For this particular model the system state could be comprised of the number of available 
repairmen Rt and the number of failed machines Ft at any time t. In general, the stochastic 
process { ( F t ,  &), t > 0 )  is not a Markov process unless the service and lifetimes have 
exponential distributions. 

As with the tandem queue, we first describe an event-oriented and then a process-oriented 
approach for this model. 

3.3.2.1 Event-Oriented Approach There are two types of events: failure events ‘F’ 
and repair events ‘R’. Each event triggers the execution of the corresponding failure or 
repair procedure. The task of the main program is to advance the simulation clock and to 
assign the correct procedure to each event. Denoting n f  the number of failed machines and 
nT the number of available repairmen, the main program is thus of the following form: 
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MAIN PROGRAM 

1: initialize: Let 2 = 0, n, = m and nj = 0 
2: for i = 1 t o n  
3: 

4: end 
5: while TRUE 
6: 
7: 
8: 
9: switch current event type 

1 0  case ‘F’: Call Failure 
11: case ‘R’: Call Repair 
12: end 
13: 

14: end 

Schedule ‘F’ of machine i at time t+lifetime(i) 

Get the first event in the event list 
Let t be the time of this (now current) event 
Let i be the machine number associated with this event 

Remove the current event from the event list 

Upon failure, a repair needs to be scheduled at a time equal to the current time plus the 
required repair time for this machine. However, this is true only if there is a repairman 
available to carry out the repairs. If this is not the case, the machine is placed in the “failed” 
queue. The number of failed machines is always increased by 1. The failure procedure is 
thus as follows: 

FAILURE PROCEDURE 

1: if (n, > 0) 
2: 

3: 

4: else Add the machine to the repair queue 
5 :  end 
6: nj = nj + 1 

Schedule ‘R’ of machine i at time t+repairtime(i) 
nr = 71, - 1 

Upon repair, the number of failed machines is decreased by 1. The machine that has 
just been repaired is scheduled for a failure after the lifetime of the machine. If the “failed” 
queue is not empty, the repairman takes the next machine from the queue and schedules a 
corresponding repair event. Otherwise, the number of idle/available repairmen is increased 
by 1. This gives the following repair procedure: 

REPAIR PROCEDURE 

1: nj = nj - 1 
2: Schedule ‘F’ for machine i at time t+lifetime(i) 
3: if repair pool not empty 
4: 
5: 
6: else n, = nr + 1 
7: end 

Remove the first machine from the “failed” queue; let j be its number 
Schedule ‘R’ of machine j at time t+repairtime(’j) 
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3.3.2.2 Process-OrientedApproach To outline a process-oriented approach for any 
simulation it is convenient to represent the processes by flowcharts. In this case there are two 
processes: the repairman process and the machine process. The flowcharts in Figure 3.10 
are self-explanatory. Note that the horizontal parallel lines in the flowcharts indicate that 
the process PASSIVATEs, that is, the process temporarily stops (is removed from the event 
list), until it is ACTIVATEd by another process. The circled letters A and B indicate how 
the two interact. A cross in the flowchart indicates that the process is rescheduled in the 
event list (E.L.). This happens in particular when the process HOLDS for an amount of 
time. After holding it resumes from where it left off. 

hold for a lifetime a 
join the FAILED queue 

E.L. 

activate first repairman I intheREPAlRpool I @ 

passivate 0 

Repairman Q 
7 leave the REPAIR pool 

REPAIR pool 

remove a machine 
from the FAILED pool 

hold for the machine 
repair time 

activate the machine 

-lo 

Figure 3.10 Flowcharts for the two processes in the repairman problem. 
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PROBLEMS 

3.1 Consider the M/M/1 queueing system in Example 1.13. Let X t  be the number of 
customers in the system at time t .  Write a computer program to simulate the stochastic 
process X = { X t ,  t 2 0) using an event- or process-oriented DES approach. Present 
sample paths of the process for the cases X = 1, p, = 2 and X = 10, p = 11. 

3.2 Repeat the above simulation, but now assume U(0,2) interarrival times and U(0,1/2) 
service times (all independent). 

3.3 Run the Matlab program of Example 3.1 (or implement it in the computer language 
of your choice). Out of 1000 runs, how many lead to a negative account balance during the 
first 100 days? How does the process behave for large t? 

3.4 Implement an event-oriented simulation program for the tandem queue. Let the 
interarrivals be exponentially distributed with mean 5 ,  and let the service times be uniformly 
distributed on [3,6]. Plot realizations of the queue length processes of both queues. 

3.5 Consider the repairman problem with two identical machines and one repairman. We 
assume that the lifetime of a machine has an exponential distribution with expectation 5 
and that the repair time of a machine is exponential with expectation 1. All the lifetimes 
and repair times are independent of each other. Let Xt be the number of failed machines at 
time t .  

a) Verify that X = { X t ,  t 2 0) is a birth-and-death process, and give the corre- 
sponding birth and death rates. 

b) Write a program that simulates the process X according to Algorithm 2.7.2 and 
use this to assess the fraction of time that both machines are out of order. Simulate 
from t = 0 to t = 100,000. 

c) Write an event-oriented simulation program for this process. 
d) Let the exponential life and repair times be uniformly distributed, on [0,10] and 

[0,2], respectively (hence the expectations stay the same as before). Simulate 
from t = 0 to t = 100,000. How does the fraction of time that both machines are 
out of order change? 

e )  Now simulate a repairman problem with the above life and repair times, but now 
with five machines and three repairmen. Run again from t = 0 to t = 100,000. 

3.6 Draw flow diagrams, such as in Figure 3.10, for all the processes in the tandem queue; 
see also Figure 3.8. 

3.7 Consider the following queueing system. Customers arrive at a circle, according to 
a Poisson process with rate X. On the circle, which has circumference 1, a single server 
travels at constant speed awl.  Upon arrival the customers choose their positions on the circle 
according to a uniform distribution. The server always moves toward the nearest customer, 
sometimes clockwise, sometimes counterclockwise. Upon reaching a customer, the server 
stops and serves the customer according to an exponential service time distribution with 
parameter p. When the server is finished, the customer is removed from the circle and the 
server resumes his journey on the circle. Let q = X a, and let X t  E [0,1] be the position of 
the server at time t .  Furthermore, let Nt be the number of customers waiting on the circle 
at time t .  Implement a simulation program for this so-called continuouspoling system wirh 
a “greedy” server, and plot realizations of the processes { X t ,  t 2 0) and { N t ,  t 2 0), 
taking the parameters X = 1, p = 2, for different values of a. Note that although the state 
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space of { X t ,  t 0 )  is continuous, the system is still a DEDS since between arrival and 
service events the system state changes deterministically. 

3.8 Consider a continuousflow line consisting of three machines in tandem separated by 
two storage areas, or buffers, through which a continuous (fluid) stream of items flows from 
one machine to the next: see Figure 3.1 1. 

Figure 3.11 A flow line with three machines and two buffers (three-stage flow line). 

Each machine i = 1 , 2 , 3  has a specific machine speed vi, which is the maximum rate 
at which it can transfer products from its upstream buffer to its downstream buffer. The 
lifetime of machine i has an exponential distribution with parameter Xi .  The repair of 
machine i starts immediately after failure and requires an exponential time with parameter 
pi. All life and repair times are assumed to be independent of each other. Failures are 
operation independent. In particular, the failure rate of a "starved" machine (a machine that 
is idle because it does not receive input from its upstream buffer) is the same as that of a 
fully operational machine. The first machine has an unlimited supply. 

Suppose all machine speeds are 1, the buffers are of equal size b, and all machines are 
identical with parameters X = 1 and p = 2. 

a) Implement an event- or process-oriented simulation program for this system. 
b) Assess via simulation the average throughput of the system (the long-run amount 

of fluid that entersfleaves the system per unit of time) as a function of the buffer 
size b. 

Further Reading 

One of the first books on Monte Carlo simulation is by Hammersley and Handscomb [3]. 
Kalos and Whitlock [4] is another classical reference. The event- and process-oriented 
approaches to discrete-event simulation are elegantly explained in Mitrani [6]. Among 
the great variety of books on DES, all focusing on different aspects of the modeling and 
simulation process, we mention [ 5 ] ,  [8], [l], and [2]. The choice of computer language in 
which to implement a simulation program is very subjective. The simple models discussed 
in this chapter can be implemented in any standard computer language, even Matlab, al- 
though the latter does not provide easy event list manipulation. Commercial simulation 
environments such as ARENNSIMAN and SIMSCRIFT 11.5 make the implementation of 
larger models much easier. Alternatively, various free SIMULA-like Java packages exist 
that offer fast implementation of event- and process-oriented simulation programs. Ex- 
amples are Pierre L'Ecuyer's SSJ h t t p :  //www. iro . umontrea l  . ca/"simardr/ssj /, 
DSOL h t t p :  //sk-3. tbm. t u d e l f t  .nl/simulation/,developed by theTechnical Uni- 
versity Delft, and J-SIM h t t p  : / / w w  . j - s i m .  zcu. c z / .  
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CHAPTER 4 

STATISTICAL ANALYSIS OF 
DISCRETE-EVENT SYSTEMS 

4.1 INTRODUCTION 

An essential part of a simulation study is the statistical analysis of the output data, that is, 
the data obtained from the simulation model. In this chapter we present several important 
statistical techniques applied to different types of simulation models. As explained in 
the previous chapter, simulation models can generally be divided into static and dynamic 
models. In both cases the behavior of the system is described by the system state which, for 
all practical purposes, can be thought of as a finite-dimensional random vector X containing 
all the information about the system. In static models the system state does not depend on 
time. The simulation of such models involves the repeated generation of the system state, 
and can be implemented using the algorithms in Chapter 2. In dynamic models the system 
state does depend on time, for example, X t  at time t .  The behavior of the system is described 
by a discrete- or continuous-time stochastic process {Xt}. 

The rest of this chapter is organized as follows. Section 4.2 treats the statistical analysis 
of the output data from static models. Section 4.3 discusses the difference between finite- 
horizon and steady-state simulation for dynamic models. In Section 4.3.2 we consider 
steady-state simulation in more detail. Two popular methods for estimating steady-state 
performance measures - the batch means and regenerative methods - are discussed in 
Sections 4.3.2.1 and 4.3.2.2, respectively. Finally, in Section 4.4 we present the bootstrap 
technique. 

Simulation and the Monte Carlo Method. Second Edifion. By R.Y. Rubinstein and D. P. Kroese 
Copyright @ 2007 John Wiley & Sons, Inc. 
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4.2 STATIC SIMULATION MODELS 

As mentioned in Chapter 3, in a static simulation model the system state does not depend 
on time. Suppose we want to determine the expectation 

C = E [ H ( X ) ]  = / H ( x )  f(x) d x  , (4.1) 

where X is a random vector with pdf f, and H ( x )  is a real-valued function called the 
performance function. We assume that C cannot be evaluated analytically and we need to 
resort to simulation. An unbiased estimator of C is the sample mean 

N 

F= N - l z  H ( X i ) ,  (4.2) 
i=l 

where X I ,  . . . , XN is a random sample from f, that is, the { X i }  are independent replica- 
tions of X - f .  

EXAMPLE 4.1 Reliability Model 

Consider a system that consists of n components. The operational state of each com- 
ponent i = 1,. . . , n is represented by X i  - Ber(p i ) ,  where X i  = 1 means that the 
component is working and X i  = 0 means that it has failed. Note that the probability 
that component i is working - its reliabilify - is p i .  The failure behavior of the 
system is thus represented by the binary random vector X = ( X I ,  . . . , X n ) ,  where it 
is usually assumed that the { X i }  are independent. Suppose that the operational state 
of the system, say Y ,  is either functioning or failed, depending on the operational 
states of the components. In other words, we assume that there exists a function 
H : 9- + {0,1} such that 

where X = (0, l}n is the set of all binary vectors of length n. 
The function H is called the structure function and often can be represented by 

a graph. In particular, the graph in Figure 4.1 depicts a bridge network with five 
components (links). For this particular model the system works (that is, H ( X )  = 1) 
if the black terminal nodes are connected by working links. The structure function is 
equal to (see Problem 4.2) 

Y = H ( X )  , 

H ( X )  = 1 - (1 - 51 2 4 )  (1 - 22x5) (1 - 21 5 3 2 5 )  (1 - 2 2 2 3 2 4 )  . (4.3) 

Figure 4.1 A bridge network. 
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Suppose we are interested in the reliability e of the general n-component system. 
We have 

For complex systems with a large number of components and with little structure, it 
is very time-consuming to compute the system reliability C via (4.4), since this requires 
the evaluation of P(X = x) and H ( x )  for 2n vectors x. However, simulation of X 
and estimation of e via (4.2) can still be a viable approach, even for large systems, 
provided that H ( X )  is readily evaluated. In practice one needs substantially fewer 
than 2" samples to estimate I accurately. 

H EXAMPLE 4.2 Stochastic PERT Network 

The program evaluation and review technique (PERT) is a frequently used tool for 
project management. Qpically a project consists of many activities, some of which 
can be performed in parallel, while others can only be performed after certain preced- 
ing activities have been finished. In particular, each activity has a list ofpredecessors, 
which must be completed before it can start. A PERT network is a directed graph 
where the arcs represent the activities and the vertices represent specific milestones. 
A milestone is completed when all activities pointing to that milestone are completed. 
Before an activity can begin, the milestone from which the activity originates must 
be completed. An example of a precedence list of activities is given in Table 4.2; its 
PERT graph is given in Figure 4.2. 

Table 4.1 Precedence ordering of activities. 
Activity 1 2 3 4 5 6 7 8 9 10 11 12 

Predecessor(s) - - 1 1 2 2 3 3 4,6 5,s 7 9,lO 

start 

Figure 4.2 A stochastic PERT network. 

finish 

Suppose each activity i will take a random time X i  to complete. An important 
quantity for PERT networks is the maximal project duration, that is, the length of 
the longest path from start to finish - the so-called critical path. Suppose we are 
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interested in the expected maximal project duration, say e.  Letting X be the vector 
of activity lengths and H(X) be the length of the critical path, we have 

r 1 

where Pj is the j-th complete path from start to finish and p is the number of such 
paths. 

4.2.1 Confidence Interval 

In order to specify how accurate a particular estimate e is, that is, how close it is to the actual 
unknown parameter e ,  one needs to provide not only a point estimate e but a confidence 
interval as well. To do so, recall from Section 1.13 that by the central limit theorem Fhas 
approximately a N(d,  u 2 / N )  distribution, where u2 is the variance of H(X). Usually u2 
is unknown, but it can be estimated with the sample variance 

- 

which (by the law of large numbers) tends to u2 as N -+ m. Consequently, for large N 
we see that e^is approximately N(I, S 2 / N )  distributed. Thus, if zy denotes the y-quantile 
of the N(0, l )  distribution (this is the number such that @(zy) = y. where a denotes the 
standard normal cdf; for example 20.95 = 1.645, since a(1.645) = 0.95), then 

In other words, an approximate (1 - a)lOO% confidence interval for d is 

where the notation (u f- b) is shorthand for the interval (u - b, a + b) .  

this confidence interval, defined as 
It is common practice in simulation to use and report the absolute andrelative widths of 

and 
wa 

W r = T ,  (4.9) 

respectively, provided that e^ > 0. The absolute and relative widths may be used as stopping 
rules (criteria) to control the length of a simulation run. The relative width is particularly 
useful when d is very small. For example, think of e as the unreliability (1 minus the 
reliability) of a system in which all the components are very reliable. In such a case e could 
be as small as d = so that reporting aresult such as wa = 0.05 is almost meaningless, 
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while in contrast, reporting w, = 0.05 is quite meaningful. Another important quantity is 
the relative ermr (RE) of the estimator defined (see also (1.47)) as 

(4.10) 

which can be estimated as S / ( ? n ) .  Note that this is equal to w, divided by 2 ~ ~ - ~ / 2 .  

e = IE[H(X)], and how to calculate the corresponding confidence interval. 
The following algorithm summarizes how to estimate the expected system performance, 

Algorithm 4.2.1 

I .  Perform N replications, XI,  . . . , XN. for the underlying model and calculate 
H ( X , ) ,  i = 1,. . ., N .  

2. Calculate apoint estimate and a confidence interval of e fmm (4.2) and (4.7), respec- 
tively 

4.3 DYNAMIC SIMULATION MODELS 

Dynamic simulation models deal with systems that evolve over time. Our goal is (as for 
static models) to estimate the expected system performance, where the state of the system 
is now described by a stochastic process {Xt}, which may have a continuous or discrete 
time parameter. For simplicity we mainly consider the case where X t  is a scalar random 
variable; we then write X t  instead of X t .  

We make a distinction between Jinite-horizon and steady-state simulation. In finite- 
horizon simulation, measurements of system performance are defined relative to a specified 
interval of simulation time [0, T ]  (where T may be a random variable), while in steady-state 
simulation, performance measures are defined in terms of certain limiting measures as the 
time horizon (simulation length) goes to infinity. 

The following illustrative example offers further insight into finite-horizon and steady- 
state simulation. Suppose that the state X t  represents the number of customers in a stable 
M I M I 1  queue (see Example 1.13 on page 26). Let 

Ft,m(s) = p ( X t  < 5 I XO = m) (4.11) 

be the cdf of X t  given the initial state X O  = m (m customers are initially present). Ft,m is 
called thefinite-horizon distribution of X t  given that X O  = m. 

We say that the process { X,} settles into steady-state (equivalently, that steady-state 
exists) if for all 'm 

(4.12) 

for some random variable X. In other words, steady-state implies that, as t + co, the 
transient cdf, Ft,,(x) (which generally depends on t and m), approaches a steady-state 
cdf, F ( z ) ,  which does not dependon the initial state, rn. The stochastic process, {X,}, is 
said to converge in distribution to a random variable X N F .  Such an X can be interpreted 
as the random state of the system when observed far away in the future. The operational 
meaning of steady-state is that after some period of time the transient cdf Ft,,(x) comes 
close to its limiting (steady-state) cdf F ( z ) .  It is important to realize that this does not mean 

lim Ft ,m(s)  = F ( z )  _= P(X < x) 
t+w 
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that at any point in time the realizations of { X,} generated from the simulation run become 
independent or constant. The situation is illustrated in Figure 4.3, where the dashed curve 
indicates the expectation of X t .  

XI 
A 

transient regime : steady-state regime 

Figure 4.3 The state process for a dynamic simulation model. 

The exact distributions (transient and steady-state) are usually available only for sim- 
ple Markovian models such as the M / M / 1  queue. For non-Markovian models, usually 
neither the distributions (transient and steady-state) nor even the associated moments are 
available via analytical methods. For performance analysis of such models one must resort 
to simulation. 

Note that for some stochastic models, only finite-horizon simulation is feasible, since 
the steady-state regime either does not exist or the finite-horizon period is so long that the 
steady-state analysis is computationally prohibitive (see, for example, [9]) .  

4.3.1 Finite-Horizon Simulation 

The statistical analysis for finite-horizon simulation models is basically the same as that for 
static models. To illustrate the procedure, suppose that {X,, t > 0 )  is a continuous-time 
process for which we wish to estimate the expected average value, 

C(T, m) = E [T-’ iT X, dt] , (4.13) 

as a function of the time horizon T and the initial state X O  = m. (For a discrete-time 
process { X t ,  t = 1 , 2 , .  . .} the integral so X, dt is replaced by the sum Ct=l X,.) As an 
example, if X t  represents the number of customers in a queueing system at time t ,  then 
C(T, m) is the average number of customers in the system during the time interval [O, TI, 
given Xo = m. 

Assume now that N independent replications are performed, each starting at state X O  = 
m. Then the point estimator and the (1 - a) 100% confidence interval for C(T, m) can be 
written, as in the static case (see (4.2) and (4.7)) , as 

T T 

N 

F(T, m) = N-’ c y, 

( q T ,  m) f Z ~ - ~ / ~ S N - ’ / ~  

i=l  

and 

(4.14) 

(4.15) 
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T respectively, where yt = T-' so X t i  d t ,  X t i  is the observation at time t from the i-th 
replication and S2 is the sample variance of { y t } .  The algorithm for estimating the finite- 
horizon performance, e(T, m),  is thus: 

Algorithm 4.3.1 

1. Perform N independent replications of theprocess { X t  , t < T } ,  starting each repli- 
cation from the initial state X O  = 'm. 

2. Calculate the point estimator and the conjidence interval of C(T, rn) from (4.14) and 
(4.15), respectively. 

If, instead of the expected average number of customers, we want to estimate the expected 
maximum number of customers in the system during an interval (0, TI, the only change 
required is to replace Y,  = T-' X t ,  dt with Y,  = maxoGtGT Xt i .  In the same way, we 
can estimate other performance measures for this system, such as the probability that the 
maximum number of customers during (0, T ]  exceeds some level y or the expected average 
period of time that the first k customers spend in the system. 

4.3.2 Steady-State Simulation 

Steady-state simulation concerns systems that exhibit some form of stationary or long-run 
behavior. Loosely speaking, we view the system as having started in the infinite past, so 
that any information about initial conditions and starting times becomes irrelevant. The 
more precise notion is that the system state is described by a stationaly process; see also 
Section 1.12. 

I EXAMPLE 4.3 M / M / l  Queue 

Consider the birth and death process { X t  , t 3 0) describing the number of customers 
in the MIMI1 queue; see Example 1.13. When the traffic intensity e = X / p  is less 
than 1, this Markov jump process has a limiting distribution, 

which is also its stationary distribution. When X O  is distributed according to this 
limiting distribution, the process { X t ,  t 2 0)  is stationary: it behaves as if it has 
been going on for an infinite period of time. In particular, the distribution of X t  
does not depend on t. A similar result holds for the Markov process { Z,, n = 
1 , 2 , .  . .}, describing the number of customers in the system as seen by the n-th 
arriving customer. It can be shown that under the condition e < 1 it has the same 
limiting distribution as { X t ,  t 0). Note that for the MIMI1 queue the steady- 
state expected performance measures are available analytically, while for the GI/G/1 
queue, to be discussed in Example 4.4, one needs to resort to simulation. 

Special care must be taken when making inferences concerning steady-state performance. 
The reason is that the output data are typically correlated; consequently, the above statistical 
analysis, based on independent observations, is no longer applicable. 

In order to cancel the effects of the time dependence and the initial distribution, it is com- 
mon practice to discard the data that are collected during the nonstationary or transient part 
of the simulation. However, it is not always clear when the process will reach stationarity. 
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If the process is regenerative, then the regenerative method, discussed in Section 4.3.2.2, 
avoids this transience problem altogether. 

From now on, we assume that {X,} is a stationary process. Suppose that we wish to 
estimate the steady-state expected value e = E[X,], for example, the expected steady-state 
queue length, or the expected steady-state sojourn time of a customers in a queue. Then ! 
can be estimated as either 

T 

or 
t=l  

T 

e = T - ~ L  xt dt , 

respectively, depending on whether { X,} is a discrete-time or continuous-time process. 

given bv 
For concreteness, consider the discrete case. The variance of F(see Problem 1.15) is 

Since {Xt} is stationary, we have Cov(X,, X,) = E[X,Xt] - e2 = R(t - s), where R 
defines the covariancefinction of the stationary process. Note that R(0) = Var(Xt). As 
a consequence, we can write (4.16) as 

T-1 

T Var(6 = R(0) + 2 (I - $) R(t) . 
t=l 

(4.17) 

Similarly, if {X,} is a continuous-time process, the sum in (4.17) is replaced with the 
corresponding integral (from t = 0 to T ) ,  while all other data remain the same. In many 
applications R(t) decreases rapidly with t ,  so that only the first few terms in the sum (4.17) 
are relevant. These covariances, say R(O), R(1), . . . , R ( K ) ,  can be estimated via their 
(unbiased) sample averages: 

- T - k  

Thus, for large T the variance of ?can be estimated as s 2 / T ,  where 

K 

s2 = 2(0) + 2 c 2(t) 
t=l 

To obtain confidence intervals, one again uses the central limit theorem, that is, the cdf of 
n(F- !) converges to the cdf of the normal distribution with expectation 0 and variance 
o2 = limT,, T Var(e) -the so-called asymptotic variance of e. Using s2 as an estimator 
for c2, we find that an approximate (1 - a)100% confidence interval for C is given by 

- 

(4.18) 

Below we consider two popular methods for estimating steady-state parameters: the 
batch means and regenerative methods. 
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4.3.2.1 The Batch Means Method The batch means method is most widely used by 
simulation practitioners to estimate steady-state parameters from a single simulation run, 
say of length M .  The initial K observations, corresponding to the transient part of the run, 
are deleted, and the remaining M - K observations are divided into N batches, each of 
length 

M - K  
N 

T=- 

The deletion serves to eliminate or reduce the initial bias, so that the remaining observations 
{ X t  , t > K }  are statistically more typical of the steady state. 

Suppose we want to estimate the expected steady-state performance C = E[Xt], assuming 
that the process is stationary for t > K .  Assume for simplicity that { X , }  is a discrete-time 
process. Let X t i  denote the t-th observation from the i-th batch. The sample mean of the 
i-th batch of length T is given by 

. T  
1 

yI=&xLi: i = 1 ,  . . . ,  N 
t= l  

Therefore, the sample mean t o f  &? is 

The procedure is illustrated in Figure 4.4. 

I I 
I I 
I I 
I I 
I I 

I’ I I 
I I 

I I I I I 

I 1  o t  
I ,  

t 

K T T T 

M 

Figure 4.4 Illustration of the batch means procedure. 

(4.19) 

In order to ensure approximate independence between the batches, their size, T ,  should 
be large enough. In order for the central limit theorem to hold approximately, the number of 
batches, N ,  should typically be chosen in the range 20-30. In such a case, an approximate 
confidence interval fore  is given by (4.7), where S is the sample standard deviation of the 
{ Yi}. In the case where the batch means do exhibit some dependence, we can apply formula 
(4.18) as an alternative to (4.7). 
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Next, we shall discuss briefly how to choose K .  In general, this is a very difficult task, 
since very few analytic results are available. The following queueing example provides 
some hints on how K should be increased as the traffic intensity in the queue increases. 

Let { X t  , t 2 0) be the queue length process (not including the customer in service) in an 
M / M / l  queue, and assume that we start the simulation at time zero with an empty queue. 
It is shown in [ I ,  21 that in order to be within 1 % of the steady-state mean, the length of the 
initial portion to be deleted, K ,  should be on the order of 8 / ( p ( 1  - e)*), where l / p  is the 
expected service time. Thus, f o r e  = 0.5, 0.8, 0.9, and 0.95, K equals 32, 200, 800, and 
3200 expected service times, respectively. 

In general, one can use the following simple rule of thumb. 

1. Define the following moving average Ak of length T :  

. T + k  
1 

Ak = - C X t  
t=k+1 

T 

2. Calculate A,+ for different values of k ,  say k = 0, m,, 2m,. . . , rm, . . ., where 7n is 
fixed, say m = 10. 

3. Find r such that A,, =z A(,+l),,, ' . . zz A(r+s)my while A( , - s )m $ A(r-s+l)m 
$ . . . $ A,,, where r 2 s and s = 5 ,  for example. 

4. Deliver K = r m .  

The batch means algorithm is as follows: 

Algorithm 4.3.2 (Batch Means Method) 

I .  Make a single simulation run of length M anddelete K observations corresponding 
to ajnite-horizon simulation. 

2. Divide the remaining M - K observations into N batches, each of length 

A4 - K T = -  
N '  

3.  Calculate the point estimator and the conjdence interval for l? from (4.19) and (4.7), 
respectively. 

EXAMPLE 4.4 GI/G/1 Queue 

The GI/G/l  queueing model is a generalization of the M / M / l  model discussed in 
Examples 1.13 and 4.3. The only differences are that (1)  the interarrival times each 
have a general cdf F and (2) the service times each have a general cdf G. Consider 
the process {Zn, n = 1 , 2 , .  . .} describing the number of people in a G I / G / l  queue 
as seen by the n-th arriving customer. Figure 4.5 gives a realization of the batch 
means procedure for estimating the steady-state queue length. In this example the 
first K = 100 observations are thrown away, leaving N = 9 batches, each of size 
T = 100. The batch means are indicated by thick lines. 
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Figure 4.5 The batch means for the process {Zn, n = 1 ,2 , .  . .} 

Remark 4.3.1 (Replication-Deletion Method) In the replication-deletion method N in- 
dependent runs are carried out, rather than a single simulation run as in the batch means 
method. From each replication, one deletes K initial observations corresponding to the 
finite-horizon simulation and then calculates the point estimator and the confidence interval 
for C via (4.19) and (4.7), respectively, exactly as in the batch means approach. Note that the 
confidence interval obtained with the replication-deletion method is unbiased, whereas the 
one obtained by the batch means method is slightly biased. However, the former requires 
deletion from each replication, as compared to a single deletion in the latter. For this rea- 
son, the former is not as popular as the latter. For more details on the replication-deletion 
method see [9]. 

4.3.2.2 The Regenerative Method A stochastic process { X , }  is called regenerative 
if there exist random time points To < Tl < T2 < . . . such that at each such time point 
the process restarts probabilistically. More precisely, the process { X , }  can be split into iid 
replicas during intervals, called cycles, of lengths ~i = T, - Ti-1, i = 1 ,2 ,  . . .. 

W EXAMPLE 4.5 Markov Chain 

The standard example of a regenerative process is a Markov chain. Assume that the 
chain starts from state i. Let TO < 2'1 < 2'2 < . . . denote the times that it visits state 
j .  Note that at each random time T,, the Markov chain starts afresh, independently of 
the past. We say that the Markov process regenerates itself. For example, consider a 
two-state Markov chain with transition matrix 

i m.. _.^ \ 
Yll Y l l  

p =  ( P2l P22 ) (4.20) 

Assume that all four transition probabilities p,, are strictly positive and that, starting 
from state 1 = 1, we obtain the following sample trajectory: 

(50,21,22,. ' .  ,210)  = (1 ,2 ,2 ,2 ,1 ,2 ,1 ,1 ,2 ,2 ,1 )  ' 
It is readily seen that the transition probabilities corresponding to the above sample 
trajectory are 

P121 P22r P22r P21, P12r P21, Pll ,  Pl2, P221 P21 ' 
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Taking j = 1 as the regenerative state, the trajectory contains four cycles with the 
following transitions: 

1 - + 2 - + 2 - + 2 - 1 ;  1 - 2 - 1 ;  1 - 1 ;  1 - + 2 - + 2 + 1 ,  

and the corresponding cycle lengths are 71 = 4, 7 2  = 2, 73 = 1, 74 = 3. 

W EXAMPLE 4.6 GI/G/1 Queue (Continued) 

Another classic example of a regenerative process is the process { Xt,  t 2 0) de- 
scribing the number of customers in the G I I G I 1  system, where the regeneration 
times TO < TI < T2 < . . . correspond to customers arriving at an empty system 
(see also Example 4.4, where a related discrete-time process is considered). Observe 
that at each such time Ti the process starts afresh, independently of the past; in other 
words, the process regenerates itself. Figure 4.6 illustrates a typical sample path of 
the process {Xt, t 2 0). Note that here TO = 0, that is, at time 0 a customer arrives 
at an empty system. 

f 

*.., ............. ..................... ......... ... ..- - -  - -  D 

Cycle 1 Cycle 2 Cycle 3 

Figure 4.6 
G I f G f 1  queue. 

A sample path of the process { X t ,  t 2 0). describing the number of customers in a 

EXAMPLE 4.7 (3, s) Policy Inventory Model 

Consider a continuous-review, single-commodity inventory model supplying external 
demands and receiving stock from a production facility. When demand occurs, it 
is either filled or back-ordered (to be satisfied by delayed deliveries). At time t ,  
the net inventory (on-hand inventory minus back orders) is N t ,  and the inventory 
position (net inventory plus on-order inventory) is X t .  The control policy is an (s, S) 
policy that operates on the inventory position. Specifically, at any time t when a 
demand D is received that would reduce the inventory position to less than s (that is, 
Xt- - D < s, where Xt- denotes the inventory position just before t ) ,  an order of 
size S - (Xt- - D) is placed, which brings the inventory position immediately back 
to S. Otherwise, no action is taken. The order arrives T time units after it is placed 
(T is called the lead time). Clearly, Xt = Nt if T = 0. Both inventory processes are 
illustrated in Figure 4.7. The dots in the graph of the inventory position (below the 
s-line) represent what the inventory position would have been if no order was placed. 
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- 

Figure 4.7 Sample paths for the two inventory processes. 

Let D, and A, be the size of the i-th demand and the length of the i-th inter- 
demand time, respectively. We assume that both { D,} and { A , }  are iid sequences, 
with common cdfs Fand G, respectively. In addition, the sequences areassumed to be 
independent of each other. Under the back-order policy and the above assumptions, 
both the inventory position process { X , }  and the net inventory process { N t }  are 
regenerative. In particular, each process regenerates when it is raised to S. For 
example, each time an order is placed, the inventory position process regenerates. It 
is readily seen that the sample path of { X,} in Figure 4.7 contains three regenerative 
cycles, while the sample path of { N t  } contains only two, which occur after the second 
and third lead times. Note that during these times no order has been placed. 
The main strengths of the concept of regenerative processes are that the existence of 

limiting distributions is guaranteed under very mild conditions and the behavior of the 
limiting distribution depends only on the behavior of the process during a typical cycle. 

Let { X , }  be a regenerative process with regeneration times To,T~, Tz, . . .. Let T, = 
Ti - T,- 1, z = 1 , 2 ,  . . . be the cycle lengths. Depending on whether { X,} is a discrete-time 
or continuous-time process, define, for some real-valued function H ,  

Ti - 1 

Ri = -1- H ( X , )  (4.21) 
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or 
(4.22) 

respectively, for i = 1 , 2 , .  . .. We assume for simplicity that To = 0. We also assume that 
in the discrete case the cycle lengths are not always a multiple of some integer greater than 
1. We can view Ri as the reward (or, alternatively, the cost) accrued during the i-th cycle. 
Let = 2'1 be the length of the first regeneration cycle and let R = R1 be the first reward. 

The following properties of regenerative processes will be needed later on; see, for 
example, [3]. 

(a) If { X t }  is regenerative, then the process { H ( X t ) }  is regenerative as well. 

(b) If E[T]  < m, then, under mild conditions, the process { X , }  has a limiting (or steady- 
state) distribution, in the sense that there exists a random variable X ,  such that 

Iim P(Xt < x) = P(X < Z) 
t-cc 

In the discrete case, no extra condition is required. In the continuous case a sufficient 
condition is that the sample paths of the process are right-continuous and that the 
cycle length distribution is non-lattice- that is, the distribution does not concentrate 
all its probability mass at points nb,  n E N, for some b > 0. 

(c) If the conditions in (b) hold, the steady-state expected value, L = E [ H ( X ) ] ,  is given 
bv 

(4.23) 

(d) (Ri ,  ~ i ) ,  i = 1 , 2 ,  . . . , is a sequence of iid random vectors. 

Note that property (a) states that the behavior patterns of the system (or any measurable 
function thereof) during distinct cycles are statistically iid, while property (d) asserts that 
rewards and cycle lengths are jointly iid for distinct cycles. Formula (4.23) is fundamental 
to regenerative simulation. For typical non-Markovian queueing models, the quantity e 
(the steady-state expected performance) is unknown and must be evaluated via regenerative 
simulation. 

To obtain a point estimate of l!, one generates N regenerative cycles, calculates the iid 
sequence of two-dimensional random vectors (Ri,  ~ i ) ,  i = 1, . . . , N ,  and finally estimates 
f? by the ratio estimator 

- R  e =  - .., 
7 

(4.24) 
h 

where 
is, E[a # L. However, 
as N -+ 00. This follows directly from the fact that, by the law of large numbers, 
converge with probability 1 to E[R] and lE[7], respectively. 

= N-' c,"=, Ri and ? = N-' c,"=, ~ i .  Note that the estimator e is biased, that 
is strongly consistent, that is, it converges to e with probability 1 

and ? 

The advantages of the regenerative simulation method are: 

(a) No deletion of transient data is necessary. 

(b) It is asymptotically exact. 

(b) It is easy to understand and implement. 
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The disadvantages of the regenerative simulation method are: 

(a) For many practical cases, the output process, { X t } ,  is either nonregenerative or its 
regeneration points are difficult to identify. Moreover, in complex systems (for ex- 
ample, large queueing networks), checking for the occurrence of regeneration points 
could be computationally expensive. 

(b) The estimator Fis biased. 

(c) The regenerative cycles may be very long. 

Next, we shall establish a confidence interval fore. Let Zi = R, - It is re_adily seen 
that the 2, are iid random variables, like the random vectors (Ri,  ~ i ) .  Letting R and 7 be 
defined as before, the central limit theorem ensures that 

~ 1 / 2  (5 - e?) "12 (F- e )  
- - 

(T u/7 

converges in distribution to the standard normal distribution as N --+ 00, where 

o2 = Var(2) = Var(R) - 2eCov(R, 7 )  + C2 Var(.r) . (4.25) 

Therefore, a (1 - c t ) l O O %  confidence interval fore = E [ R ] / E ( T ]  is 

(F* H) , (4.26) 

(4.27) 

is the estimator of (T' based on replacing the unknown quantities in (4.25) with their unbiased 
estimators. That is. 

. N  . N  

X(Ti - ?)2  
1 1 

s 2 2  = - 
N - 1  s11 = - C(Ri - Z)', 

i=l i=l 
N - 1  

and 

Note that (4.26) differs from the standard confidence interval, say (4.7), by having an 
additional term ?. 

The algorithm for estimating the (1 - a)  100% confidence interval for e is as follows: 

Algorithm 4.3.3 (Regenerative Simulation Method) 

I .  Simulate N regenerative cycles of the process { X , }  . 

2.  Compute the sequence { (Ri, T i ) ,  z = 1, . . . , N}. 

3. Calculate the point estimator Fond the conjidence interval of C from (4.24) and (4.26), 
respectively 
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Note that if one uses two independent simulations of length N, one for estimating lE[R] and 
the other for estimating IE[r], then clearly S 2  = 5’11 + e 2 S 2 2 ,  since Cov(R, r )  = 0. 

Remark 4.3.2 If the reward in each cycle is of the form (4.21) or (4.22), then e = E [ H ( X ) ]  
can be viewed as both the expected steady-state performance and the long-run average 
performance. This last interpretation is valid even if the reward in each cycle is not of the 
form (4.21)-(4.22) as long as the { (ri, R,)} are iid. In that case, 

(4.28) 

where Nt is the number of regenerations in [0, t ] .  

rn EXAMPLE 4.8 Markov Chain: Example 4.5 (Continued) 

Consider again the two-state Markov chain with the transition matrix 

Pl l  P12 

= ( P21 P22 ) 
Assume, as in Example 4.5, that starting from 1 we obtain the following sample 
trajectory: ( ~ 0 ~ ~ 1 ,  ZZ, . . . ,210) = ( 1 , 2 , 2 , 2 ,  I ,  2 , 1 ,  I ,  2,2 ,  I) ,  which has four cy- 
cles with lengths r 1  = 4, 72  = 2, 73 = 1, 74 = 3 and corresponding transitions 
( ~ 1 2 , ~ 2 2 , ~ 2 2 , ~ 2 1 ) ,  ( ~ 1 2 ~ ~ 2 1 ) ~    PI^), ( ~ 1 2 , ~ 2 2 , ~ 2 1 ) .  In addition, assume that each 
transition from i to j incurs a cost (or, alternatively, a reward) cij and that the related 
cost matrix is 

c = ( C i j )  = ( ;;; ;;; ) = ( ; ; ) 
Note that the cost in each cycle is not of the form (4.21) (however, see Problem 4.14) 
but is given as 

We illustrate the estimation procedure for the long-run average cost e.  First, observe 
that R1 = 1 + 3 + 3 + 2 = 9, R 2  = 3, R3 = 0, a_”d R4 = 6. It follows that 
5 = 4.5. Since ? = 2.5, the point estimate of e is e = 1.80. Moreover, Sll = 
1 5 , S 2 2  = 513, S 1 2  = 5, and S2 = 2.4. This gives a 95% confidence interval f o r e  
of (1.20,2.40). 

rn EXAMPLE 4.9 Example 4.6 (Continued) 

Consider the sample path in Figure 4.6 of the process { X t ,  t 2 0) describing the 
number of customers in the GZ/G/1 system. The corresponding sample path data 
are given in Table 4.2. 
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Table 4.2 Sample path data for the GI/G/l  queueing process. 

t E interval X t  t E interval X t  t E interval Xt 

[O.OO, 0.80) 1 [3.91,4.84) 1 [6.72,7.92) 1 
[0.80,1.93) 2 [4.84,6.72) 0 [7.92,9.07) 2 
[1.93,2.56) 1 [9.07,10.15) 1 
[2.56,3.91) 0 [10.15,11.61) 0 

Cycle 1 Cycle 2 Cycle 3 

Notice that the figure and table reveal three complete cycles with the follow- 
ing pairs: ( R 1 , ~ 1 )  = (3.69,3.91), ( R 2 , 5 )  = (0.93,2.81), and (R3,73) = 
(4.58,4.89). The resultant statistics are (rounded) e = 0.79, ,911  = 3.62, S22 = 
1.08, S12 = 1.92, S 2  = 1.26 and the 95% confidence interval is (0.79 f 0.32). 

A 

EXAMPLE 4.10 Example 4.7 (Continued) 

Let {Xt,  t 2 0) be the inventory position process described in Example 4.7. Table 
4.3 presents the data corresponding to the sample path in Figure 4.7 for a case where 
s = 10, S = 40, and T = 1. 

Table 4.3 
boxes indicate the regeneration times. 

The data for the inventory position process, { X t } ,  with s = 10 and S = 40. The 

t Xt t Xt t Xl 

40.00 40.00 40.00 
1.79 32.34 6.41 33.91 11.29 32.20 
3.60 22.67 6.45 23.93 11.38 24.97 
5.56 20.88 6.74 19.53 12.05 18.84 
5.62 11.90 8.25 13.32 13.88 13.00 

9.31 10.51 1 1 4 . 7 1 )  40.00 

Based on the data in Table 4.3, we illustrate the derivation of the point esti- 
mator and the 95% confidence interval for the steady-state quantity k! = P(X < 
30) = ! E [ I ~ x < 3 0 ) ] ,  that is, the probability that the inventory position is less 
than 30. Table 4.3 reveals three complete cycles with the following pairs: 
( R I , ~ )  = (2.39,5.99), ( R z , T ~ )  = (3.22,3.68), and ( R 3 , ~ 3 )  = (3.33,5.04), A 

where Ri = J:-l Itxt<30) dt. The resulting statistics are (rounded) k! = 0.61, 
S11 = 0.26, 5 2 2  = 1.35, Sl2 = -0.44, and S2 = 1.30, which gives a 95% 
confidence interval (0.61 f 0.26). 

4.4 THE BOOTSTRAP METHOD 

Suppose we estimate a number e via some estimator H = H(X), where X = 
( X I ,  . . . , Xn), and the { X i }  form a random sample from some unknown distribution F.  It 
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is assumed that H does not depend on the order of the {Xi}. To assess the quality (for ex- 
ample, accuracy) of the estimator H, one could draw independent replications X1 . . XN 
of X and find sample estimates for quantities such as the variance of the estimator 

Var(H) = E [ H ~ ]  - ( IE[ I I ] ) ' ,  

the bias of the estimator 
Bias = E[H] - P ,  

and the expected quadratic error, or mean square error (MSE) 

MSE = E [ ( H  - 1 ) 2 ]  . 

However, it may be too time-consuming, or simply not feasible, to obtain such replications. 
An alternative is to resample the original data. Specifically, given an outcome (51, . . . , 2,) 

of X, we draw a random sample Xi,. . . X; not from F but from an approximation to this 
distribution. The best estimate that we have about F on the grounds of {xi} is the empirical 
distribution, F,,, which assigns probability mass l /n  to each point zi ,  i = 1,. . . n. In the 
one-dimensional case, the cdf of the empirical distribution is thus given by 

Drawing from this distribution is trivial: for each j ,  draw U - U[O, 11, let J = LU n] + 1, 
and return X; = x J .  Note that if the {xi} are all different, vector X* = (XT, . . . , X;) 
can take nn different values. 

The rationale behind the resampling idea is that the empirical distribution F, is close to 
the actual distribution F and gets closer as n gets larger. Hence, any quantities depending 
on F ,  such as l E ~ [ h ( H ) l ,  where h is a function, can be approximated by EF, [ h ( H ) ] .  The 
latter is usually still difficult to evaluate, but it can be simply estimated via Monte Carlo 
simulation as 

where H ; ,  . . . , H i  are independent copies of H' = H(X*). This seemingly self-referent 
procedure is called bootstrapping - alluding to Baron von Munchhausen, who pulled 
himself out of a swamp by his own bootstraps. As an example, the bootstrap estimate of 
the expectation of H is 

which is simply the sample mean of {lit}. Similarly, the bootstrap estimate for Var( H )  is 
the sample variance 

B 

C(H; - z*y. 1 
B - 1  

Var(f1) = - (4.29) 
i=l 

Perhaps of more interest are the bootstrap estimators for the bias and MSE, respectively 
H - H a n d  
-* 

- B  
1 
- C(H,' - H)2  . 

i=l 
B 
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Note that for these estimators the unknown quantity C is replaced with the original estimator 
H .  Confidence intervals can be constructed in the same fashion. We discuss two variants: 
the normal method and the percentile method. In the normal method, a (1 - &)loo% 
confidence interval for e is given by 

( H  f &r/2S*) > 

where S’ is the bootstrap estimate of the standard deviation of H ,  that is, the square root of 
(4.29). In the percentile method, the upper and lower bounds of the (1 -a)  100% confidence 
interval fore  are given by the 1 - a / 2  and a / 2  quantiles of H ,  which in turn are estimated 
via the corresponding sample quantiles of the bootstrap sample { Hf }. 

PROBLEMS 

4.1 We wish to estimate C = f 2  e-x2/2 dz = s H ( z ) f ( z )  dz via Monte Carlo simu- 
lation using two different approaches: (a) defining H(z)  = 4 ecX2/’ and f the pdf of the 
U[-2,2] distribution and (b) defining H ( z )  = & I{-2,,,2) and f the pdf of the N ( 0 , l )  
distribution. 

a) For both cases, estimate C via the estimator F i n  (4.2). Use a sample size of 

b) For both cases, estimate the relative error o f t  using N = 100. 
c) Give a 95% confidence interval for C for both cases, using N = 100. 
d) From b), assess how large N should be such that the relative width of the con- 

fidence interval is less than 0.001, and carry out the simulation with this N .  
Compare the result with the true value of e. 

4.2 Prove that the structure function of the bridge system in Figure 4.1 is given by (4.3). 

4.3 Consider the bridge system in Figure 4.1. Suppose all link reliabilities are p .  Show 
that the reliability of the system is p2(2 + 2 p - 5 p 2  + 2 p 3 ) .  

4.4 Estimate the reliability of the bridge system in Figure 4.1 via (4.2) if the link reli- 
abilities are ( P I , .  . . , p5) = (0.7, 0.6, 0.5, 0.4, 0.3). Choose a sample size such that the 
estimate has a relative error of about 0.01. 

4.5 

N = 100. 

Consider the following sample performance: 

Assume that the random variables X,, 1: = 1,. . . , 5  are iid with common distribution 

(a) Gamma(Xt, PE), where A, = i and pL = i. 

(b) Ber(pi), where pi = 1/22, 

Run a computer simulation with N = 1000 replications, and find point estimates and 95% 
confidence intervals for E = IE[H(X)] .  

4.6 Consider the precedence ordering of activities in Table 4.4. Suppose that durations 
of the activities (when actually started) are independent of each other, and all have expo- 
nential distributions with parameters 1 . l ,  2.3, 1.5, 2.9, 0.7, and 1.5, for activities 1, . . . ,6,  
respectively. 
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Table 4.4 Precedence ordering of activities. 

Activity 1 2 3 4 5 6 
Predecessor(s) - - 1 2,3 2,3 5 

n 

Figure 4.8 The PERT network corresponding to Table 4.4. 

a) Verify that the corresponding PERT graph is given by Figure 4.8. 
b) Identify the four possible paths from start to finish. 
c) Estimate the expected length of the critical path in (4.5) with a relative error of 

4.7 Let { X t ,  t = 0, 1 ,2 ,  . . .} be a random walk on the positive integers; see Example 1.1 1. 
Suppose that p = 0.55 and q = 0.45. Let Xo = 0. Let Y be the maximum position reached 
after 100 transitions. Estimate the probability that Y 2 15 and give a 95% confidence 
interval for this probability based on 1000 replications of Y .  

4.8 Consider the MIMI1 queue. Let X t  be the number of customers in the system at 
time t > 0. Run a computer simulation of the process { X t ,  t > 0)  with X = 1 and p = 2, 
starting with an empty system. Let X denote the steady-state number of people in the 
system. Find point estimates and confidence intervals for C = IE[X], using the batch means 
and regenerative methods as follows: 

a) For the batch means method run the system for a simulation time of 10,000, 
discard the observations in the interval [0,100], and use N = 30 batches. 

b) For the regenerative method, run the system for the same amount of simulation 
time (10,000) and take as regeneration points the times where an amving customer 
finds the system empty. 

c) For both methods, find the requisite simulation time that ensures a relative width 
of the confidence interval not exceeding 5%. 

4.9 Let 2, be the number of customers in an MIMI1 queueing system, as seen by the 
n,-th arriving customer, ri = 1 , 2 ,  . . .. Suppose that the service rate is p = 1 and the arrival 
rate is X = 0.6. Let 2 be the steady-state queue length (as seen by an arriving customer 
far away in the future). Note that 2, = XT,-. with X t  as in Problem 4.8, and T, is the 
arrival epoch of the n-th customer. Here, “T, -” denotes the time just before T,. 

less than 5%. 

a) Verify that C = E[Z] = 1.5. 
b) Explain how to generate {Z,,, n = 1 , 2 ,  . . .} using a random walk on the positive 

integers, as in Problem 4.7. 
c )  Find the point estimate of e and a 95% confidence interval for e using the batch 

means method. Use a sample size of lo4 customers and N = 30 batches, throwing 
away the first K = 100 observations. 
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d) Do the same as in c) using the regenerative method instead. 
e)  Assess the minimum length of the simulation run in order to obtain a 95% confi- 

dence interval with an absolute width wa not exceeding 5%. 
f) Repeat c), d), and e) with e = 0.8 and discuss c). d), and e) as e -+ 1. 

4.10 Table 4.5 displays a realization of a Markov chain, { X t ,  t = 0,1,2,  . . .}, with state 
space {0 ,1 ,2 ,3}  starting at 0. Let X be distributed according to the limiting distribution 
of this chain (assuming it has one). 

Table 4.5 A realization of the Markov chain. 

Find the point estimator, and the 95% confidence interval for C = E[X] using the 
regenerative method. 

4.11 Let W, be the waiting time of the n-th customer in a GI/G/l queue, that is, the 
total time the customer spends waiting in the queue (thus excluding the service time). 
The waiting time process { W,, n = 1,2,  . . .} follows the following well-known Lzndley 
equation: 

(4.30) 

where A,+1 is the interval between the n-th and (n  + 1)-st arrivals, S, is the service time 
of the n-th customer, and W1 = 0 (the first customer does not have to wait and is served 
immediately). 

Wn+l = max{Wn + S, - A,+1, 0 } ,  n = 1 , 2 , .  . ., 

a) Explain why the Lindley equation holds. 
b) Find the point estimate and the 95% confidence interval for the expected waiting 

time for the 4-th customer in an M/M/l queue with e = 0.5, (A  = I), starting 
with an empty system. Use N = 5000 replications. 

c) Find point estimates and confidence intervals for the expected average waiting 
time for customers 21,.  . . , 70  in the same system as in b). Use N = 5000 
replications. Hint: the point estimate and confidence interval required are for the 
following parameter: 

4.12 Run a computer simulation of 1000regenerativecycles of the (s, S )  policy inventory 
model (see Example 4.7), where demands arrive according to a Poisson process with rate 2 
(that is, A - Exp(2)) and the size of each demand follows a Poisson distribution with mean 
2 (that is, D - Poi(2)). Take s = 1, S = 6, lead time T = 2, and initial value X O  = 4. 
Find point estimates and confidence intervals for the quantity e = P(2 < X < 4), where 
X is the steady-state inventory position. 

4.13 Simulate the Markov chain {X,} in Example 4.8, using p l l  = 1/3 and p22 = 3/4 
for 1000 regeneration cycles. Obtain a confidence interval for the long-run average cost. 

4.14 Consider Example 4.8 again, with p l l  = 1/3 and p22 = 3/4. Define Y ,  = 
( X I ,  X,+1) and H ( Y , )  = C X , , X , + , .  i = 0,1,. . .. Show that {Y t }  is a regenerative pro- 
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cess. Find the corresponding limitingkteady-state distribution and calculate C = lE[H( Y ) ] ,  
where Y is distributed according to this limiting distribution. Check if C is contained in the 
confidence interval obtained in Problem 4.13. 

4.15 Consider the tandem queue of Section 3.3.1. Let X t  and Yt denote the number of 
customers in the first and second queues at time t ,  including those who are possibly being 
served. Is { ( X t ,  x), t 2 0 )  a regenerative process? If so, specify the regeneration times. 

4.16 Consider the machine repair problem in Problem 3.5, with three machines and two 
repair facilities. Each repair facility can take only one failed machine. Suppose that the 
lifetimes are Exp(l / lO) distributed and the repair times are U(O,8) distributed. Let C be 
the limiting probability that all machines are out of order. 

a) Estimate C via the regenerativeestimator Fin (4.24) using 100 regeneration cycles. 
Compute the 95% confidence interval (4.27). 

b) Estimate the bias and MSE of Fusing the bootstrap method with a sample size of 
B = 300. (Hint: theoriginaldataarex = (XI,. . . , X ~ O O ) ,  wherexi  = (Ri,  ~ i ) ,  

i = 1,. . . , 100. Resample from these data using the empirical distribution.) 
c) Compute 95% bootstrap confidence intervals f o r t  using the normal and percentile 

methods with B = 1000 bootstrap samples. 

Further Reading 

The regenerative method in a simulation context was introduced and developed by Crane 
and Iglehart [4, 51. A more complete treatment of regenerative processes is given in [3]. 
Fishman [7] treats the statistical analysis of simulation data in great detail. Gross and Harris 
[8] is a classical reference on queueing systems. Efron and Tibshirani [6] gives the defining 
introduction to the bootstrap method. 
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CHAPTER 5 

CONTROLLING THE VARIANCE 

5.1 INTRODUCTION 

This chapter treats basic theoretical and practical aspects of variance reduction techniques. 
Variance reduction can be viewed as a means of utilizing known information about the 
model in order to obtain more accurate estimators of its performance. Generally, the more 
we know about the system, the more effective is the variance reduction. One way of 
gaining this information is through a pilot simulation run of the model. Results from 
this first-stage simulation can then be used to formulate variance reduction techniques that 
will subsequently improve the accuracy of the estimators in the second simulation stage. 
The main and most effective techniques for variance reduction are importance sampling 
and conditional Monte Carlo. Other well-known techniques that can provide moderate 
variance reduction include the use of common and antithetic variables, control variables, 
and stratification. 

The rest of this chapter is organized as follows. We start, in Sections 5.2-5.5, with 
common and antithetic variables, control variables, conditional Monte Carlo, and stratified 
sampling. However, most of our attention, from Section 5.6 on, is focused on impor- 
tance sampling and likelihood ratio techniques. Using importance sampling, one can often 
achieve substantial (sometimes dramatic) variance reduction, in particular when estimating 
rare-event probabilities. In Section 5.6 we present two alternative importance sampling- 
based techniques, called the variance minimization and cross-entropy methods. Section 5.7 
discusses how importance sampling can be carried out sequentially/dynamically. Section 
5.8 presents a simple, convenient, and unifying way of constructing efficient importance 
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sampling estimators: the so-called transform likelihood ratio (TLR) method. Finally, in 
Section 5.9 we present the screening method for variance reduction, which can also be seen 
as a dimension-reduction technique. The aim of this method is to identify (screen out) the 
most important (bottleneck) parameters of the simulated system to be used in an importance 
sampling estimation procedure. 

5.2 COMMON AND ANTITHETIC RANDOM VARIABLES 

To motivate the use of common and antithetic random variables in simulation, consider the 
following simple example. Let X and Y be random variables with known cdfs, F and G, 
respectively. Suppose we want to estimate e = E[X - Y ]  via simulation. The simplest 
unbiased estimator for e is X - Y .  Suppose we draw X and Y via the IT method: 

x = F-'(Ul) , U' N U(0, l )  , 
U2 - U(O,  1) . Y = G-'(U2) , 

The important point to notice is that X and Y (or U1 and lJ2) need not be independent. In 
fact, since 

Var(X - Y) = Var(X) + Var(Y) - 2Cov(X,  Y )  (5 .2)  

and since the marginal cdfs of X and Y have been prescribed, it follows that the variance of 
X - Y is minimized by maximizing the covariance in (5.2). We say that common random 
variables are used in (5.1) if U2 = Ul and that antithetic random variables are used if 
U2 = 1 - U1. Since both F-' and G-' are nondecreasing functions, it is readily seen that 
using common random variables implies 

Cov ( F - ' ( U ) ,  G- ' (U) )  > 0 

for U - U(0,l). Consequently, variance reduction is achieved, in the sense that the 
estimator F - ' ( U )  - G-'(U) has a smaller variance than the crude Monte Carlo (CMC) 
estimator X - Y, where X and Y are independent, with cdfs F and G, respectively. In fact, 
it is well known (see, for example, [35]) that using common random variables maximizes 
the covariance between X and Y,  so that Var(X - Y) is minimized. Similarly, Var(X + Y )  
is minimized when antithetic random variables are used. 

Now considerminimal variance estimation of E [ H l ( X )  - H2(Y)], where X and Y are 
unidimensional variables with known marginal cdfs, F and G ,  respectively, and H I  and 
Ef2 are real-valued monotone functions. Mathematically, the problem can be formulated as 
follows: 

Within the set of all two-dimensional joint cdfs of (X, Y ) .  find a joint cdf, F', that 
minimizes Var(HI(X) - H 2 ( Y ) ) ,  subject to X and Y having the prescribed cdfs F 
and G ,  respectively. 

This problem has been solved by Gal, Rubinstein, and Ziv [ 111, who proved that if H I  and 
H2 are monotonic in the same direction, then the use of common random variables leads 
to optimal variance reduction, that is, 

minVar(Hl(X) - H2(Y)) = Var (Hl[F-'(U)] - Hz[G-'(U)]) . (5.3) 

The proof of (5.3) uses the fact that if H ( u )  is a monotonic function, then H ( F - ' ( U ) )  is 
monotonic as well, since F - ' ( u )  is. By symmetry, if H1 and H2 are monotonic in opposite 

F' 
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directions, then the use of antithetic random variables (that is, U2 = 1 - U l )  yields optimal 
variance reduction. 

This result can be further generalized by considering minimal variance estimation of 

IE[ffl(X) - ff2(Y)I I (5.4) 

where X = (XI,. . . , X , )  and Y = (Y1, . .  . , Yn) are random vectors with X, N F, and 
Y ,  N G,, i = 1,. . . , n, and the functions H1 and H2 are real-valued and monotone in 
each component of X and Y .  If the pairs { (X,, Y , ) }  are independent and H1 and H2 are 
monotonic in the same direction (for each component), then the use of common random 
variables again leads to minimal variance. That is, we take X, = F,-'(U,) and Y ,  = 
GL1(U,), i = 1 , .  . . ,n, where U1,. . . , U, are independent U(0, 1)-distributed random 
variables, or, symbolically, 

x = F-yu), Y = G-'(U) . ( 5 . 5 )  

Similarly, if H1 and H2 are monotonic in opposite directions, then using antithetic random 
variables is optimal. Finally, if H1 and H2 are monotonically increasing with respect 
to some components and monotonically decreasing with respect to others, then minimal 
variance is obtained by using the appropriatecombination of common and antithetic random 
variables. 

We now describe one of the main applications of antithetic random variables. Suppose 
one wants to estimate 

e = E [ H ( X ) I  > 

where X - F is a random vector with independent components and the sample performance 
function, EZ(x), is monotonic in each component of x. An example of such a function is 
given below. 

EXAMPLE 5.1 Stochastic Shortest Path 

Consider the undirected graph in Figure 5.1, depicting a so-called bridge network. 

Figure 5.1 Determine the shortest path from A to B in a bridge network. 

Suppose we wish to estimate the expected length e of the shortest path between 
nodes (vertices) A and B, where the lengths of the links (edges) are random variables 
XI,. . . , X 5 .  We have e = E [ H ( X ) ] ,  where 
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Note that H(x) is nondecreasing in each component of the vector x. 

edge lengths {Xi} can be written as 
Similarly, the length of the shortest path H ( X )  in an arbitrary network with random 

where 9 j  is the j - th  complete path from the source to the sink of the network 
and p is the number of complete paths in the network. The sample performance is 
nondecreasing in each of the components. 

An unbiased estimator of d = E[H(X)]  is the CMC estimator, given by 

. N  

where X I , .  . . , XN is an iid sample from the (multidimensional) cdf F. An alternative 
unbiased estimator of C ,  for N even, is 

Nl2 1 
= c { H ( X k )  + H ( X t ) ) } ,  

k= 1 

(5.9) 

where xk = F-l(uk) and xt) = F - l ( l  - Uk), using notation similar to (5.5). The 
estimator 8.1 is called the antithetic estimator of e .  Since H ( X )  + N(X("))  is a particular 
case of H l ( X )  - H 2 ( Y )  in (5.4) (with H 2 ( Y )  replaced by -H(X(a))) ,  one immediately 
obtains that Var(aa)) < Var(a. That is, the antithetic estimator, 8.), is more accurate than 
the CMC estimator, 

To compare the efficiencies of ;and aa), one can consider their relative time variance, 

(5.10) 

A 

where T(a)  and T are the CPU times required to calculate the estimators .?.) and e, respec- 
tively. Note that 

var(8')) = NZ Var(H(X)) + var(H(X(a)))  + 2 ~ o v [ ~ ( ~ ) ,  H(x('))I) N/2 ( 
= var(Zj + COV(H(X), H ( x ( ~ ) ) ) / N  . 

Also, T ( O )  < T ,  since the antithetic estimator, aa), needs only half as many random 
numbers as its CMC counterpart, Neglecting this time advantage, the efficiency measure 
(5.10) reduces to 

(5.1 1) 

where the covariance is negative and can be estimated via the corresponding sample covari- 
ance. 

The use of common/antithetic random variables for the case of dependent components 
of X and Y for strictly monotonic functions, H1 and H2, is presented in Rubinstein, 
Samorodnitsky, and Shaked [33]. 
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EXAMPLE 5.2 Stochastic Shortest Path (Continued) 

We estimate the expected length of the shortest path for the bridge network in Ex- 
ample 5.1 for the case where each link has an exponential weight with parameter 
1. Taking a sample size of N = 10,000, the CMC estimate is F = 1.159 with an 
estimated variance of 5.6 . whereas the antithetic estimate is F= 1.164 with 
an estimated variance of 2.8 . Therefore, the efficiency E of the estimator aa) 
relative to the CMC estimator Tis about 2.0. 

EXAMPLE 5.3 Lindley's Equation 

Consider Lindley's equation for the waiting time of the (n  + 1)-st customer in a 
GI/G/l  queue : 

See also (4.30). Here U, = S, - A,+1, where S, is the service time of the n-th 
customer, and A,+1 is the interarrival time between the n-th and ( n +  1)-st customer. 
Since W,, is a monotonic function of each component A*, . . . , A, and S1, . . . , Sn-l ,  
one can obtain variance reduction by using antithetic random variables. 

Wn+l = max{W, + U,,O}, W1 = 0 .  

5.3 CONTROL VARIABLES 

The control variables method is one of the most widely used variance reduction techniques. 
Consider first the one-dimensional case. Let X be an unbiased estimator of p, to be 
obtained from a simulation run. A random variable C is called a control variable for X if 
it is correlated with X and its expectation, r, is known. The control variable C is used to 
construct an unbiased estimator of p with a variance smaller than that of X. This estimator, 

x, = x - Cr(c - T )  , (5.12) 

where cr is a scalar parameter, is called the linear control variable. The variance of X, is 
given by 

var(x,) = Var(X) - ~ ~ C O V ( X ,  C )  + crzVar(C) 

(see, for example, Problem 1.15). Consequently, the value a* that minimizes Var(X,) is 

Cov(X, C )  
a* = 

Var( C) 
(5.13) 

Qpically, a* needs to be estimated from the corresponding sample covariance and variance. 
Using a*, the minimal variance is 

var(X,.) = (1 - pgc)var(X) , (5.14) 

where Q X C  denotes the correlation coefficient of X and C. Notice that the larger l ~ x c l  is, 
the greater is the variance reduction. 

Formulas (5.12)-(5.14) can be easily extended to the case of multiple control variables. 
Indeed, let C = (Cl, . . . , Cm)T be a (column) vector of m control variables with known 
mean vector r = E[C] = (r1, .  . . , r,)T, where T% = E[Ci]. Then the vector version of 
(5.12) can be written as 

X ,  = x - aT(c - r) , (5.15) 
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where a is an m-dimensional vector of parameters. It is not difficult to see that the value 
a' that minimizes Var(X,) is given by 

a* = C , ' a x c ,  (5.16) 

where Cc denotes the m x m covariance matrix of C and axc denotes the m x 1 vector 
whose a-th component is the covariance of X and C,, = 1,. . . , m. The corresponding 
minimal variance evaluates to 

where 
R $ ~  = ( u X C ) ~  c;' a x c / V a r ( X )  

is the square of the so-called multiple correlation coeficient of X and C .  Again, the larger 
I R x c  I is, the greater is the variance reduction. The case where X is a vector with dependent 
components and the vector a is replaced by a corresponding matrix is treated in Rubinstein 
and Marcus [30]. 

The following examples illustrate various applications of the control variables method. 

EXAMPLE 5.4 Stochastic Shortest Path (Continued) 

Consider again the stochastic shortest path estimation problem for the bridge network 
in Example 5.1. As control variables we can use, for example, the lengths of the paths 
PJ, j = 1, . . . ,4, that is, any (or all) of 

c1 = x1 +x4 

c 2  = x1 +x3+x5 

c3 = xz+x3+x4 
c 4  = x z + x 5 .  

The expectations of the { Ci} are easy to calculate, and each Ci is positively correlated 
with the length of the shortest path H(X) = min(C1,. . . , Cd}. 

EXAMPLE 5.5 Lindley's Equation (Continued) 

Consider Lindley's equation for the waiting time process { W,, n = 1 , 2 , .  . .} in the 
GI/G/1  queue; see Example 5.3. As a control variable for W, we can take C,, 
defined by the recurrence relation 

where U, = S, - A,+1, as in the waiting time process. Obviously, C, and Wn 
are highly correlated. Moreover, the'expectation r ,  = E[Cn] is known. It is r ,  = 
(n  - 1) (E[S] - E[A]), where E[S] and E[A] are the expected service and interarrival 
times, respectively. The corresponding linear control process is 

Y, = w, - a(C, - T,)  
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EXAMPLE 5.6 Queueing Networks 

Consider the estimation of the expected steady-state performance e = E [ X ]  in a 
queueing network. For example, suppose that X is the steady-state number of cus- 
tomers in the system. As a linear control random process, one may take 

K = x, - .(Ct - .,) ] 

where X t  is the number of customers in the original system, and Ct is the number of 
customers in an auxiliary Markovian network for which the steady-state distribution 
is known. The latter networkmust be synchronized in time with the original network. 

In order to produce high correlations between the two processes, { X , }  and { Ct }, it 
is desirable that both networks have similar topologies and similar loads. In addition, 
they must use a common stream of random numbers for generating the input variables. 
Expressions for the expected steady-state performance T = E[C], such as the expected 
number in the system in a Markovian network, may be found in [ 141. 

5.4 CONDITIONAL MONTE CARL0 

Let 

be some expected performance measure of a computer simulation model, where X is the 
input random variable (vector) with a pdf f(x) and H ( X )  is the sample performance 
measure (output random variable). Suppose that there is a random variable (or vector), 
Y - g ( y ) ,  such that the conditional expectation E [ H ( X )  I Y = y ]  can be computed 
analytically. Since, by (1.1 I), 

it follows that E [ H ( X )  I Y ]  is an unbiased estimator of e. Furthermore, it is readily seen 
that 

Var(E[H(X) I YI) < Var(H(X)) , (5.20) 

so that using the random variable E[H(X) I Y ] ,  instead of H ( X ) ,  leads to variance reduc- 
tion. Thus, conditioning always leads to variance reduction. To see (5.20), one uses the 
property (see Problem 5.6) that for any pair of random variables (V ,  V), 

Var(U) = E[ Var(U I V ) ]  + Var( E[U I V ]  ) . (5.21) 

Since both terms on the right-hand side are nonnegative, (5.20) immediately follows. The 
conditional Monte Carlo idea is sometimes referred to as Rao-Blackwellization. The con- 
ditional Monte Carlo algorithm is given next. 

Algorithm 5.4.1 (Conditional Monte Carlo) 

1. Generate a sample Y1 . . . YN from g(y). 

2. Calculate E [ H ( X )  I Yk], k = 1, . . . , N analytically. 

3. Estimate C = E[H(X)]  by 

(5.22) 
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Algorithm 5.4.1 requires that a random variable Y be found, such that E[H(X) 1 Y = y] 
is known analytically for all y. Moreover, for Algorithm 5.4.1 to be of practical use, the 
following conditions must be met: 

(a) Y should be easy to generate. 

(b) E[H(X) I Y = y] should be readily computable for all values of y. 

(c) E[Var(H(X) I Y ) ]  should be large relative to Var( E[H(X) I Y ]  ). 

1 EXAMPLE 5.7 Random Sums 

Consider the estimation of 

where 
R 

i = l  

R is a random variable with a given distribution and the {Xi} are iid with Xi  - F 
and independent of R. Let F' be the cdf of the random variable S, for fixed R = r .  
Noting that 

we obtain 

As an estimator of e based on conditioning, we can take 

(5.23) 

5.4.1 Variance Reduction for Reliability Models 

Next, we present two variance reduction techniques for reliability models based on condi- 
tioning. As in Example 4.1 on page 98, we are given an unreliable system of n components, 
each of which can beeither functioning or failed, with a structure function H that determines 
the state of the system (working or failed) as a function of the states of the components. The 
component states X I ,  . . . , X ,  are assumed to be independent, with reliabilities {pi} and 
unreliabilities {qi}, where q, = 1 - p , .  The probability of system failure- the unreliability 
of the system - is thus F = P(H(X) = 0). In typical applications the unreliability is very 
small and is difficult to estimate via CMC. 
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5.4.7.7 Permutation Monte Carlo Permutation Monte Carlo is a conditional Monte 
Carlo technique for network reliability estimation; see Elperin et al. [9]. Here the compo- 
nents are unreliable links in a network, such as in Example 4.1. The system state H ( X )  is 
the indicator of the event that certain preselected nodes are connected by functioning links. 
Suppose we wish to estimate the system unreliability F = P(H(X) = 0). 

To apply the conditional Monte Carlo idea, we view the static network as a snapshot of a 
dynamic network at time t = 1. In this dynamic system, the links are repaired independently 
of each other with an exponential repair time with rate p, = - ln(q,), e = 1, . . . , n. At 
time t = 0 all links are failed. The state of the links at time t is given by the vector Xt. Note 
that {Xt,  t 2 0) is a Markov jump process with state space (0, l}n. Since the probability 
of each link e being operational at time t = 1 is p , ,  the reliability of the dynamic network 
at time t = 1 is exactly the same as the reliability of the original network. 

Let n denote the order in which the links become operational, and let SO,& + 
S1, . . . , SO + . . . + Sn-l be the times at which those links are constructed. Il is a random 
variable that takes values in the space of permutations of the set of links & = { 1, . . . , n}  
- hence the name permutation Monte Carlo. For any permutation K = (e l ,  e2, . . . , en) 
define &O = &, and &i = Ei-1 \ { e i } ,  1 < i < n - 1. Thus, &i corresponds to the set 
of links that are still failed after i links have been repaired. Let b = b ( ~ )  be the number 
of repairs required (in the order defined by K )  to bring the network up. This is called the 
critical number for K .  

From the theory of Markov jump processes (see Section 1.12.5) it follows that 
n 

(5.24) 

where X i  = CeEEi pe.  More importantly, conditional on II the sojourn times SO, . . . , Sn- 1 

are independent and each Si is exponentially distributed with parameter Xi, i = 0, . . . , n- 1. 
By conditioning on I1 we have 

(5.25) - 
T = c P[H(X1) = 0 I n = 7r] P[n = 7r] = E[g(rI)], 

x 

with 
g(.rr) = P [ H ( X l )  = 0 I n = K ] .  (5.26) 

From the definitions of S, and b we see that g ( x )  is equal to the probability that the sum 
of b independent exponential random variables with rates X i ,  i = 0, 1, . . . , b - 1 exceeds 1. 
This can be computed exactly, for example by using convolutions. Specifically, we have 

g(n) = 1 - F O * " ' * F b - l ( l ) ,  

where Fi is the cdf of the Exp(Xi) distribution, and * means convolution; that is, 

F * G ( t )  = F ( t  - Z) dG(z) . Jd' 
Alternatively, it can be shown (see, for example [25]) that 

g(K) = (1,0,. . . , 0 ) e A  ( I , .  . . , I ) ~ .  (5.27) 

where A is the matrix with diagonal elements -XO, . . . , -&-I and upper-diagonal elements 
XO, . . . , Xb-2 and 0 elsewhere. Here eA is the matrix exponential CEO A k / k ! .  
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Let 111 , . . . , IIN be iid random permutations, each distributed according to n; then 

N 

(5.28) - 1  
N f = - C d n k )  

k= 1 

is an unbiased estimator for F. This leads to the following algorithm for estimating the 
unreliability F .  

Algorithm 5.4.2 (Permutation Monte Carlo) 

Draw a random permutation II according to (5.24). A simple way, similar to Algo- 
rithm 2.8.1, is to draw Ye - Exp(pL,), e = l , .  . . , n independently and return II as 
the indices of the (increasing) ordered values. 

Determine the critical number b and the rates X i ,  a = 1 ,  . . . , b - 1. 

Evaluate the conditional probability g(II) exactly, for example, via (5.27). 

Repeat Steps 1-3 independently N times and deliver (5.28) as the estimator for F .  

5.4.1.2 Conditioning Using Minimal Cuts The second method to estimate unreli- 
ability efficiently, developed by Ross [27], employs the concept of a minimal cut. A state 
vector x is called a cut vector if H ( x )  = 0. If in addition H ( y )  = 1 for all y > x, then 
x is called the minimal cut vector. Note that y > x means that y, 2 xi, i = 1 , .  . . , n 
with yi > z, for some i. If x is a minimal cut vector, the set C = {i : zi = 0 )  is called 
a minimal cut set. That is, a minimal cut set is a minimal set of components whose failure 
ensures the failure of the system. If C1, . . . , C, denote all the minimal cut sets, the system 
is functioning if and only if at least one component in each of the cut sets is functioning. It 
follows that H ( x )  can be written as 

(5.29) 

To proceed, we need the following proposition, which is adapted from [27]. 

Proposition 5.4.1 Let Yl, . . . , Y, be Bernoulli random variables (possibly dependent) with 
success parameters al, . . . , a,. Define S = c,”=, y3 and let a = E[S] = c,”=, aj .  Let J 
be a discrete uniform random variable on { 1, . . . , m} independent of  Y1,. . . , Y,. Finally, 
let R be any random variable that is independent of J .  Then 

a .  

a 
P ( J  = j l Y ,  = 1 )  = 2, j = l , . .  . , m  (5.30) 

and 
E[SR] = lE[S] E[R I YJ = 11 

Proof To derive formula (5.30) write, using Bayes’ formula, 

(5.31) 
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Taking into account that P(YJ  = 11 J = j )  = P(y3 = 1 I J = j )  = P(y3 = 1) = a j ,  the 
result follows. To prove (5.31), write 

m m 

E[SR] = C E [ R Y , ]  = C E [ R I  y3 = 1]P(y, = 1) 
j = 1  3=1 

m 

Since a = E[S] and, by (5.30), { a j / a }  is the conditional distribution of J given YJ = 1, 
(5.31) follows. 0 

We shall apply Proposition 5.4.1 to the estimation of the unreliability ? = P(H(X) = 0) .  
Let y3 = niGcj (1 - X i ) ,  j = 1, . . . , m, where, as before, {Cj} denotes the collection of 
minimal cut sets. Thus, y3 is the indicator of the event that all components in C, arefailed. 
Note that y3 - Ber(aj), with 

aj = rI qi . (5.32) 
i€C,  

Let S = c,”=, y3 and a = E[S] = c,”=, aj. By (5.29) we have F = P(S > 0), and by 
(5.31) it follows that 

where conditional on YJ = 1 the random variable J takes the value j with probability a j / a  
for j = 1, . . . , m. This leads to the following algorithm for estimating the unreliability F. 

Algorithm 5.4.3 (Conditioning via Minimal Cuts) 

I .  Generate a discrete random variable J with P( J = j )  = a j / a ,  j = 1, . . . , m. 

2. Set X i  equal to 0 for all i E CJ andgenerate the values of all other Xi, i 4 CJ fmm 
their corresponding Ber(pi) distributions. 

3.  Evaluate a/S ,  where S denotes the number of minimal cut sets that have all their 
components failed (note that S 2 1). 

4. Repeat Steps 1-3 independently N times and take N - ’  c,”=, alS, as an estimator 
OfF = P(S > 0) .  

It is readily seen that when a,, the mean number of failed minimal cuts, is very small, the 
resulting estimator will have a very small variance. In addition, onecan apply importance 
sampling to the conditional estimator 5 to further reduce the variance. 

5.5 STRATIFIED SAMPLING 

Stratified sampling is closely related to both the composition method of Section 2.3.3 and 
the conditional Monte Carlo method discussed in the previous section. As always, we wish 
to estimate 

e = E[H(X)J = 1 ~ ( x ) f ( x )  dx . 
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Suppose that X can be generated via the composition method. Thus, we assume that there 
exists a random variable Y taking values in { 1, . . . , m},  say, with known probabilities 
{ p , ,  i = 1, . . . , m}, and we assume that it is easy to sample from the conditional distri- 
bution of X given Y .  The events {Y = i}, i = 1,. . . , m form disjoint subregions, or 
strata (singular: stratum), of the sample space 0, hence the name stratification. Using the 
conditioning formula (1.1 l), we can write 

m 

e = E[E[H(X) I Y ] ]  = Cpz E[H(X) I Y = i] . (5.33) 
1.= 1 

This representation suggests that we can estimate l via the following stratijed sampling 
estimator: 

m N, 

e .̂ = CP1 N ,  C H ( X l , )  1 (5.34) 

where X,, is the j-th observation from the conditional distribution of X given Y = i. Here 
N ,  is the sample size assigned to the i-th stratum. The variance of the stratified sampling 
estimator is given by 

1= 1 3=1 

(5.35) 

where uz = Var(H(X) I Y = i). 
How the strata should be chosen depends very much on the problem at hand. However, 

for a given particular choice of the strata, the sample sizes { N,} can be obtained in an 
optimal manner, as given in the next theorem. 

Theorem 5.5.1 (Stratified Sampling) Assuming that a maximum number of N samples 
can be collected, that is, El”=, N, = N ,  the optimal value of N ,  is given by 

which gives a minimal variance of 

(5.36) 

(5.37) 

Proof: The theorem is straightforwardly proved using Lagrange multipliers and is left as 
an exercise to the reader; see Problem 5.9. 0 

Theorem 5.5.1 asserts that the minimal variance of e^. is attained for sample sizes Ni that 
are proportional to pi  ui. A difficulty is that although the probabilities pi are assumed to be 
known, the standard deviations {ai} are usually unknown. In practice, one would estimate 
the { ui} from “pilot” runs and then proceed to estimate the optimal sample sizes, N t  , from 
(5.36). 

A simple stratification procedure, which can achieve variance reduction without requiring 
prior knowledge of u: and H ( X ) ,  is presented next. 
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Proposition 5.5.1 Let the sample sizes N, beproportional to p, ,  that is, N, = p ,  N, i = 
1, .  . . m. Then 

var(e^s) 6 E r ( l j  . 

Proof Substituting N, = p ,  N in (5.35) yields Var(e^.) = & zz, p ,  0:. The result now 
follows from 

m 

NVar(P^) = Var(H(X)) 2 E[Var(H(X) 1 Y)] = x p l a :  = NVar(e^s), 
r = l  

where we have used (5.21) in the inequality. 0 

Proposition 5.5.1 states that the estimator is more accurate than the CMC estimator 
It effects stratification by favoring those events {Y = i} whose probabilities p ,  are largest. 
Intuitively, this cannot, in general, be an optimal assignment, since information on a: and 
H ( X )  is ignored. 

In the special case of equal weights ( p ,  = l /m and N, = N / m ) ,  the estimator (5.34) 
reduces to 

(5.38) 

and the method is known as the systematic sampling method (see, for example, Cochran 
[61). 

5.6 IMPORTANCE SAMPLING 

The most fundamental variance reduction technique is importancesampling. As we shall see 
below, importance sampling quite often leads to a dramatic variance reduction (sometimes 
on the order of millions, in particular when estimating rare event probabilities), while with 
all of the above variance reduction techniques only a moderate reduction, typically up to 
10-fold, can be achieved. Importance sampling involves choosing a sampling distribution 
that favors important samples. Let, as before, 

where H is the sample performance and f is the probability density of X. For reasons that 
will become clear shortly, we add a subscript f to the expectation to indicate that it is taken 
with respect to the density f .  

Let g be another probability density such that H f is dominated by g. That is, g(x) = 
0 + H(x) f(x) = 0. Using the density g we can represent e as 

(5.40) 

where the subscript g means that the expectation is taken with respect to g. Such a density 
is called the importance sampling density, proposal density, or instrumental density (as we 
use g as an instrument to obtain information about l). Consequently, if X I ,  . . . , XN is a 
random sample from g, that is, X I ,  . . . , XN are iid random vectors with density g, then 

(5.41) 
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is an unbiased estimator of e. This estimator is called the importance sampling estimator. 
The ratio of densities, 

(5.42) 

is called the likelihood ratio. For this reason the importance sampling estimator is also 
called the likelihood ratio estimator. In the particular case where there is no change of 
measure, that is, g = f, we have W = 1, and the likelihood ratio estimator in (5.41) 
reduces to the usual CMC estimator. 

5.6.1 Weighted Samples 

The likelihood ratios need only be known up to a constanf, that is, W(X) = cw(X) for 
some known function w(.). Since IE,[W(X)] = 1, we can write f2 = IEg[H(X) W ( X ) ]  as 

This suggests, as an alternative to the standard likelihood ratio estimator (5.42), the follow- 
ing weighted sample estimator: 

(5.43) 

Here the { w k } ,  with 'uik = w ( & ) ,  are interpreted as weights of the random sample 
{ X k } ,  and the sequence { ( x k , W k ) }  is called a weighted (random) sample from g(x). 
Similar to the regenerative ratio estimator in Chapter 4, the weighted sample estimator 
(5.43) introduces some bias, which tends to 0 as N increases. Loosely speaking, we 
may view the weighted sample { (&,  W k ) }  as a representation of f ( x )  in the sense that 
e = IE,[H(X)I =: e2, for any function H ( . ) .  

5.6.2 The Variance Minimization Method 

Since the choice of the importance sampling density g is crucially linked to the variance 
of the estimator Fin (5.41), we consider next the problem of minimizing the variance of 
with respect to g, that is, 

minVarg (H(x) g(x,> f (XI . 
9 

(5.44) 

It is not difficult to prove (see, for example, Rubinstein and Melamed [3 11 and Problem 5.13) 
that the solution of the problem (5.44) is 

In particular, if H(x) 0 - which we will assume from now on - then 

(5.45) 

(5.46) 

and 
Var,. (F) = varg- (H(x)w(x)) = Var,. (e) = o . 

The density g* as per (5.45) and (5.46) is called the optimal importance sampling density. 



IMPORTANCE SAMPLING 133 

EXAMPLE58 

Let X - Exp(u-') and H ( X )  = I { x 2 7 )  for some y > 0. Let f denote the pdf of 
X .  Consider the estimation of 

We have 

Thus, the optimal importance sampling distribution of X is the shfted exponential 
distribution. Note that H f is dominated by g' but f itself is not dominated by g*.  
Since g* is optimal, the likelihood ratio estimator z i s  constant. Namely, with N = 1, 

It is important to realize that, although (5.41) is an unbiased estimator for any pdf g 
dominating H f ,  not all such pdfs are appropriate. One of the main rules for choosing a 
good importance sampling pdf is that the estimator (5.41) should have finite variance. This 
is equivalent to the requirement that 

(5.47) 

This suggests that g should not have a "lighter tail" than f and that, preferably, the likelihood 
ratio, f / g .  should be bounded. 

In general, implementation of the optimal importance sampling density g* as per (5.45) 
and (5.46) is problematic. The main difficulty lies in the fact that to derive g * ( x )  one needs 
to know e.  But e is precisely the quantity we want to estimate from the simulation! 

In most simulation studies the situation is even worse, since the analytical expression 
for the sample performance H is unknown in advance. To overcome this difficulty, one 
can perform a pilot run with the underlying model, obtain a sample H ( X 1 ) ,  . . . , H ( X N ) ,  
and then use it to estimate g*. It is important to note that sampling from such an artificially 
constructed density may be a very complicated and time-consuming task, especially when 
g is a high-dimensional density. 

Remark5.6.1 (Degeneracy of the Likelihood Ratio Estimator) The likelihood ratio es- 
timator C in (5.41) suffers from a form of degeneracy in the sense that the distribution of 
W ( X )  under the importance sampling density g may become increasingly skewed as the 
dimensionality n of X increases. That is, W(X) may take values close to 0 with high 
probability, but may also take very large values with a small but significant probability. As 
a consequence, the variance of W(X) under g may become very large for large n. As an 
example of this degeneracy, assume for simplicity that the components in X are iid, under 
both f and g .  Hence, both f ( x )  and g(x) are the products of their marginal pdfs. Suppose 
the marginal pdfs of each component X i  are f l  and 91, respectively. We can then write 
W(X) as 

(5.48) 
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Using the law of large numbers, the random variable c:=, In (fl(Xi)/gl(Xi)) is approx- 
imately equal to n E,, [In (fi ( X ) / g l  (X))] for large n. Hence, 

(5.49) 

Since E,, [ln(gl(X)/fl(X))] is nonnegative (see page 31), the likelihood ratio W(X) 
tends to 0 as n --+ 00. However, by definition, the expectation of W(X) under g is always 
1. This indicates that the distribution of W(X) becomes increasingly skewed when n gets 
large. Several methods have been introduced to prevent this degeneracy. Examples are 
the heuristics of Doucet et al. [8], Liu [23], and Robert and Casella [26] and the so-called 
screening method. The last will be presented in Sections 5.9 and 8.2.2 and can be considered 
as a dimension-reduction technique. 

When the pdf f belongs to some parametric family of distributions, it is often convenient 
to choose the importance sampling distribution from the same family. In particular, suppose 
that f ( . )  = f(.; u) belongs to the family 

9 = {f( . ;v) ,  v E Y }  . 

Then the problem of finding an optimal importance sampling density in this class reduces 
to the following parametric minimization problem: 

min Var, (H(X) W(X; u, v)) , (5.50) 

where W(X; u, v) = f (X; u)/f(X; v). We will call the vectorv the referenceparameter 
vector or tilting vector. Since under f(.; v) the expectation C = Ev[H(X) W(X; u, v)]  is 
constant, the optimal solution of (5.50) coincides with that of 

V E Y  

m i n V ( v )  , 
V E Y  

(5.51) 

where 
V(v)  = Ev[H2(X) W2(X; u, v)] = E"[H2(X) W(X; u, v)] . (5.52) 

We shall call either of the equivalent problems (5.50) and (5.5 1) the variance minimization 
(VM) problem, and we shall call the parameter vector .v that minimizes programs (5.50) - 
(5.5 1) the optimal VMreferenceparameter vector. We refer to u as the nominal parameter. 

The sample average version of (5.51) - (5.52) is 

where 

(5.53) 

(5.54) 

and the sample XI,  . . . , XN is from f(x; u). Note that as soon as the sample X1,. . . , XN 
is available, the function v(v) becomes a deterministic one. 

Since in typical applications both functions V(v)  and 6 ( v )  are convex and differentiable 
with respect to v, and since one can typically interchange the expectation and differentiation 
operators (see Rubinstein and Shapiro [32]), the solutions of programs (5.51) - (5.52) and 
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(5.53) - (5.54) can be obtained by solving (with respect to v) the following system of 
equations: 

I E " [ P ( X )  V W ( X ;  u, v)] = 0 ( 5 . 5 5 )  

(5.56) 

respectively, where 

f (X. u) 
f (X;  v) 

V W ( X ;  u, v) = V- = [V I n f ( X ;  v)] W ( X ;  u, v) , 

the gradient is with respect to v and the function V In f (x; v) is the score function, see 
(1.64). Note that the system of nonlinear equations (5.56)is typically solved using numerical 
methods. 

EXAMPLES9 

Consider estimating e = IE[X], where X N Exp(u-'). Choosing f ( z ; v )  = 
v-' exp(z,u-'), z 2 0 as the importance sampling pdf, the program (5.51) reduces 

The optimal reference parameter *v is given by 

*v = 221.  

We see that .IJ is exactly two times larger than u. Solving the sample average version 
(5.56) (numerically), one should find that, for large N ,  its optimal solution .z will be 
close to the true parameter *v. 

EXAMPLE 5.10 Example 5.8 (Continued) 

Consider again estimating e = P U ( X  2 y) = exp(-yu-'). In this case, using the 
family { f (z; v), v > 0) defined by f (2; v) = vP1 exp(zv-l), z 2 0, the program 
(5.51) reduces to 

The optimal reference parameter .w is given by 

1 
2 

*?I = - {y + 'u + &G2} = y + ; + O((u/y)2) , 

where O(z2) is a function of z such that 

lim (30 = constant 
2-0 5 2  

We see that for y >> u, .v is approximately equal to y. 
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It is important to note that in this case the sample version (5.56) (or (5.53) - (5.54)) 
is meaningful only for small y, in particular for those y for which C is not a rare-event 
probability, say where C < For very small C ,  a tremendously large sample N is 
needed (because of the indicator function I{  x)y}). and thus the importance sampling 
estimator Fis  useless. We shall discuss the estimation of rare-event probabilities in 
more detail in Chapter 8. 
Observe that the VM problem (5.5 1) can also be written as 

min V(V) = min E, [H’(x) W(X; u, v) W(X; u, w)] , (5.57) 
V E Y  V E Y  

where w is an arbitrary reference parameter. Note that (5.57) is obtained from (5.52) by 
multiplying and dividing the integrand by f(x; w). We now replace the expected value in 
(5.57) by its sample (stochastic) counterpart and then take the optimal solution of the asso- 
ciated Monte Carlo program as an estimator of *v. Specifically, the stochastic counterpart 
of (5.57) is 

N 1 
min ?(v) = min - H’(X,) W(Xk ; u,v)  W(Xk ; u, w) , ( 5 . 5 8 )  

where X I ,  . . . , XN is an iid sample from f( .; w) and w is an appropriately chosen trial 
parameter. Solving the stochastic program (5.58) thus yields an estimate, say 3, of *v. 
In some cases it may be useful to iterate this procedure, that is, use as a trial vector in 
(5 .58) ,  to obtain a better estimate. 

Once the reference parameter v = 3 is determined, C is estimated via the likelihood 
ratio estimator 

V E Y  “ E Y  N ,=I 

(5.59) 

where XI,  . . . , XN is a random sample from f(.; v). Typically, the sample size N in (5.59) 
is larger than that used for estimating the reference parameter. We call (5.59) the standard 
likelihood ratio (SLR) estimator. 

5.6.3 The Cross-Entropy Method 

An alternative approach for choosing an “optimal” reference parameter vector in (5.59) is 
based on the Kullback-Leibler cross-entropy, or simply crass-entropy (CE), mentioned in 
(1 S9). For clarity we repeat that the CE distance between two pdfs g and h is given (in the 
continuous case) by 

Recall that ID(g, h)  2 0, with equality if and only if g = h. 
The general idea is to choose the importance sampling density, say h, such that the CE 

distance between the optimal importance sampling density g* in (5.45) and h is minimal. 
We call this the CE optirnalpdf: Thus, this pdf solves the followingfunctional optimization 
program: 

min ID (g’, h) . 
I 1  
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If we optimize over all densities h, then it is immediate from ’D(g* ,  h) 2 0 that the CE 
optimal pdf coincides with the VM optimal pdf g*. 

As with the VM approach in (5.50)and (5.5 I), we shall restrict ourselves to the parametric 
family of densities { f(.; v),  v E Y }  that contains the “nominal” density f(.; u). The CE 
method now aims to solve the parametric optimization problem 

min ’D ( g * ,  f(.; v)) . 
V 

Since the first term on the right-hand side of (5.60) does not depend on v, minimizing the 
Kullback-Leibler distance between g’ and f(.; v) is equivalent to maximizing with respect 
to v, 1 H ( x )  f ( x ;  u) In f ( x ;  v) dx = EU [ f f ( X )  In f ( x ;  v)l, 

where we have assumed that H ( x )  is nonnegative. Arguing as in (5.5 I), we find that the CE 
optimal reference parameter vector v* can be obtained from the solution of the following 
simple program: 

max D(v) = max IE, [ H ( X )  In f ( X ;  v)] . (5.61) 

Since typically D(v) is convex and differentiable with respect to v (see Rubinstein and 
V V 

Shapiro [32]), the solution to (5.61) may be obtained by solving 

E, [ H ( X )  V In f ( X ;  v)] = 0 , (5.62) 

provided that the expectation and differentiation operators can be interchanged. The sample 
counterpart of (5.62) is 

. N  

(5.63) 

By analogy to the VM program (5.51), we call (5.61) the CE program, and we call the 
parameter vector v* that minimizes the program (5.64) the optimal CE referenceparameter 
vector. 

Arguing as in (5.57), it is readily seen that (5.61) is equivalent to the following program: 

max D(v) = max E, [ H ( X )  W ( X ;  u, w) In f ( X ;  v)] , (5.64) 

where W ( X ;  u, w) is again the likelihood ratio and w is an arbitrary tilting parameter. 
Similar to (5.58),  we can estimate v* as the solution of the stochastic program 

V 

N 1 
v N  

max ~ ( v )  = max - C H ( x ~ )  w ( x ~ ;  u, w) In f ( & ;  v) , (5.65) 

where X I , .  . . , X N  is a random sample from I ( . ;  w). As in the VM case, we mention the 
possibility of iterating this procedure, that is, using the solution of (5.65) as a trial parameter 
for the next iteration. 

Since in typical applications the function 5 in (5.65) is convex and differentiable with 
respect to v (see [32]), the solution of (5.65) may be obtained by solving (with respect to 
v) the following system of equations: 

k=l 

(5.66) 
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where the gradient is with respect to v. 
Our extensive numerical studies show that for moderate dimensions n, say n 5 50, the 

optimal solutions of the CE programs (5.64)and (5.65) (or (5.66)) and their VM counterparts 
(5.57) and (5.58) are typically nearly the same. However, for high-dimensional problems 
(n > 50), we found numerically that the importance sampling estimator g i n  (5.59) based 
on VM updating of v outperforms its CE counterpart in both variance and bias. The latter 
is caused by the degeneracy of W ,  to which, we found, CE is more sensitive. 

The advantage of the CE program is that it can often be solved analytically. In particular, 
this happens when the distribution of X belongs to an exponentialfamily of distributions; see 
Section A.3 of the Appendix. Specifically (see (A. 16)). for a one-dimensional exponential 
family parameterized by the mean, the CE optimal parameter is always 

and the corresponding sample-based updating formula is 

(5.67) 

(5.68) 

respectively, where X I , .  . . , X N  is a random sample from the density f(.; w) and w is an 
arbitrary parameter. The multidimensional version of (5.68) is 

(5.69) 

for i = 1, . . . , n, where Xkt is the i-th component of vector Xk and u and w are parameter 
vectors. 

Observe that for u = w (no likelihood ratio term W ) ,  (5.69) reduces to 

(5.70) 

where Xk N f(x; u). 
Observe also that because of the degeneracy of W ,  one would always prefer the estimator 

(5.70) to (5.69), especially for high-dimensional problems. But as we shall see below, this 
is not always feasible, particularly when estimating rare-event probabilities in Chapter 8. 

EXAMPLE 5.11 Example 5.9 continued 

Consider again the estimation of l = E [ X ] ,  where X N E x p ( u - l )  and f(z; v) = 
v-' exp(zv-'), z 2 0. Solving (5.62). we find that the optimal reference parameter 
v* is equal to 

Thus, v* is exactly the same as *v. For the sample average of (5.62), we should find 
that for large N its optimal solution 8' is close to the optimal parameter v* = 2u. 
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I EXAMPLE 5.12 Example 5.10 (Continued) 

Consider again the estimation of C = Bu(X > y) = exp(-yv.-'). In this case, we 
readily find from (5.67) that the optimal reference parameter is w* = y + u. Note that 
similar to the VM case, for y >> u, the optimal reference parameter is approximately 
7 .  

Note that in the above example, similar to the VM problem, the CE sample version 
(5.66) is meaningful only when y is chosen such that C is not a rare-eventprobability, say 
when l < In Chapter 8 we present a general procedure for estimating rare-event 
probabilities of the form C = B,(S(X) 2 y) for an arbitrary function S(x) and level y. 

EXAMPLE 5.13 Finite Support Discrete Distributions 

Let X be a discrete random variable with finite support, that is, X can only take a 
finite number of values, say a l , .  . . Let ui = B(X = ai),i = 1,. . . , m and 
define u = (u1, . . . , urn). The distribution of X is thus trivially parameterized by 
the vector u. We can write the density of X as 

m 

From the discussion at the beginning of this section we know that the optimal CE 
and VM parameters coincide, since we optimize over all densities on { a1 , . . . , am}.  
By (5.45) the VM (and CE) optimal density is given by 

so that 

for any reference parameter w, provided that Ew[H(X) W(X; u, w)] > 0. 
The vector V* can be estimated from the stochastic counterpart of (5.71), that is, 

as 

where XI, . . . , XN is an iid sample from the density f(.; w). 
A similar result holds for a random vector X = (XI,  . . . , X,) where XI,  . . . , 

X ,  are independent discrete random variables with finite support, characterized by 
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the parameter vectors ul,  . . . , u,. Because of the independence assumption, the 
CE problem (5.64) separates into n subproblems of the form above, and all the 
components of the optimal CE reference parameter v* = (v;, . . . , v;), which is 
now a vector of vectors, follow from (5.72). Note that in this case the optimal VM 
and CE reference parameters are usually not equal, since we are not optimizing the 
CE over all densities. See, however, Proposition 4.2  in Rubinstein and Kroese [29] 
for an important case where they do coincide and yield a zero-variance likelihood 
ratio estimator. 

The updating rule (5.72), which involves discrete finite support distributions, and in 
particular the Bernoulli distribution, will be extensively used for combinatorial optimization 
problems later on in the book. 

EXAMPLE 5.14 Example 5.1 (Continued) 

Consider the bridge network in Figure 5.1, and let 

S(X) = m i n ( X l +  X4, XI  + X3 + X5,  X z  + X3 + X4, X Z  + X 5 ) .  

Suppose we wish to estimate the probability that the shortest path from node A to 
node B has a length of at least y; that is, with H ( x )  = I{s(x)2r}, we want to estimate 

e = WWI = PU(S(X) 2 7 )  = L [ I { S ( X ) > y } I  ' 

We assume that the components { X , }  are independent, that Xi - E x p ( u ; l ) ,  i = 
1, . . . ,5,  and that y is chosen such that C 2 lo-'. Thus, here the CE updating formula 
(5.69) and its particular case (5.70) (with w = u) applies. We shall show that this 
yields substantial variance reduction. The likelihood ratio in this case is 

As a concrete example, let the nominal parameter vector u be equal to (1,1,0.3, 
0.2,O.l) and let y = 1.5. We will see that this probability C is approximately 0.06. 

Note that the typical length of a path from A to B is smaller than y = 1.5; 
hence, using importance sampling instead of CMC should be beneficial. The idea 
is to estimate the optimal parameter vector v* without using likelihood ratios, that 
is, using (5.70), since likelihood ratios, as in (5.69) (with quite arbitrary w, say by 
guessing an initial trial vector w), would typically make the estimator of v* unstable, 
especially for high-dimensional problems. 

Denote by G1 the CE estimator of v* obtained from (5.70). We can iterate (repeat) 
this procedure, say for T iterations, using (5.69), and starting with w = G g , .  . .. 
Once the final reference vector V^T is obtained, we then estimate C via a larger sample 
from f ( x ; G ~ ) ,  say of size N1, using the SLR estimator (5.59). Note, however, 
that for high-dimensional problems, iterating in this way could lead to an unstable 
final estimator G T .  In short, a single iteration with (5.70) might often be the best 
alternative. 



SEQUENTIAL IMPORTANCE SAMPLING 141 

0 
1 
2 
3 

Table 5.1 presents the performance of the estimator (5.59), starting from w = u = 
(1,1,0.3,0.2,0.1) and then iterating (5.69) three times. Note again that in the first 
iteration we generate a sample X1, .  . . XN from f(x; u) and then apply (5.70) to 
obtain an estimate v  ̂ = (51, . . . ,55) of the CE optimal reference parameter vector 
v* . The sample sizes for updating v^ and calculating the estimator l were N = lo3 
and N1 = lo5, respectively. In the table RE denotes the estimated relative error. 

1 1 0.3 0.2 0.1 0.0643 0.0121 
2.4450 2.3274 0.2462 0.2113 0.1030 0.0631 0.0082 
2.3850 2.3894 0.3136 0.2349 0.1034 0.0644 0.0079 
2.3559 2.3902 0.3472 0.2322 0.1047 0.0646 0.0080 

Table 5.1 Iterating the five-dimensional vector 0.  

iteration I V I F  RE 

Note that v  ̂ already converged after the first step, so using likelihood ratios in 
Steps 2 and 3 did not add anything to the quality of v^. It also follows from the 
results of Table 5.1 that CE outperforms CMC (compare the relative errors 0.008 and 
0.0121 for CE and CMC, respectively). To obtain a similar relative error of 0.008 
with CMC would require a sample size of approximately 2.5.  lo5 instead of lo5; we 
thus obtained a reduction by a factor of 2.5 when using the C E  estimation procedure. 
As we shall see in Chapter 8 for smaller probabilities, a variance reduction of several 
orders of magnitude can be achieved. 

5.7 SEQUENTIAL IMPORTANCE SAMPLING 

Sequential importance sampling (SIS), also called dynamic importancesampling, is simply 
importance sampling carried out in a sequential manner. To explain the SIS procedure, 
consider the expected performance l in (5.39) and its likelihood ratio estimator Fin (5.41). 
with f(x) the “target” and g(x) the importance sampling, or proposal, pdf. Suppose that 
(a) X is decomposable, that is, it can be written as a vector X = (XI, . . . , Xn), where each 
of the Xi may be multi-dimensional, and (b) it is easy to sample from g(x) sequentially. 
Specifically, suppose that g(x) is of the form 

(5.74) 

where it is easy to generate X1 from density g l ( q ) ,  and conditional on X1 = 2 1 ,  the 
second component from density 92(52121). and so on, until one obtains a single random 
vector X from g(x).  Repeating this independently N times, each time sampling from g(x), 
one obtains a random sample X I , .  . . , XN from g(x) and estimates C according to (5.41). 
To further simplify the notation, we abbreviate ( 2 1 , .  . . z t )  to x1:t for all t .  In particular, 
~ 1 : ~  = x. Typically, t can be viewed as a (discrete) time parameter and ~ 1 : ~  as a path or 
trajectory. By the product rule of probability (1.4), the target pdf J(x) can also be written 
sequentially, that is, 

g(x) = g1(21) g2(22 1x1) ’ ‘  ’ gn(2n Izlr .. . zn-1) 7 

f(x) = f(21) f(z2 1 5 1 ) ’  ‘ f ( z n  1 X1:n-1). (5.75) 
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From (5.74) and (5.75) it follows that we can write the likelihood ratio in product form 
as 

(5.76) f ( ~ l ) f ( ~  Ix l )" ' f (xn  Ix1:n-l) 

g1(21)g2(22 I ~ l ) . . . g n ( x n  Ix1:n-l) 
W(x) = 

or, if WL(xl:t) denotes the likelihood ratio up to time t ,  recursively as 

Wt(X1:t) = U t  Wt-l(Xl:t-l), t = 1,. . . 1  n 7 (5.77) 

with initial weight Wo(x1:o) = 1 and incremental weights u1 = f(z1)/g1(xi) and 

, t = 2 , . . . ,  n .  (5.78) 

In order to update the likelihood ratio recursively, as in (5.78), one needs to known the 
marginal pdfs f ( x ~ : ~ ) .  This may not be easy when f does not have a Markov structure, as 
it requires integrating f(x) over all z ~ + ~ ,  . . . , 2,. Instead one can introduce a sequence of 
auxiliary pdfs fl, f2 ,  . . . , fn that are easily evaluated and such that each ft(xl:t) is a good 
approximation to f (xpt ) .  The terminating pdf fn must be equal to the original f. Since 

f(.t I a t - 1 )  - - f (X1:t) 

f(xl:t-l)gt(xt I X1:t-1) 
ut = 

gt(ZL I X1:t-1) 

we have as a generalization of (5.78) the incremental updating weight 

(5.79) 

(5.80) 

fort = 1, .  . . , n, where we put fo(x1:o) = 1. 

Remark 5.7.1 Note that the incremental weights ut only need to be defined up to uconstunt, 
say c t ,  for each t .  In this case the likelihood ratio W(x) is known up to a constant as well, say 
W(x) = Cw(x) ,  where 1/C = E,[w(X)] can be estimated via the corresponding sample 
mean. In other words, when the normalization constant is unknown, one can still estimate e 
using the weighted sample estimator (5.43) rather than the likelihood ratio estimator (5.42). 

Summarizing, the SIS method can be written as follows. 

Algorithm 5.7.1 (SIS Algorithm) 

I .  For eachjnite t = 1,. . . , n, sample X t  from gt(Zt 1 xpt-1). 

2. Compute wt = ut wL-l, where wo = 1 and 

t =  l , . . . , n .  (5.81) ft(X1:t) 

U t  = ft-l(XI:t-l)gt(Xt IX1:t-1)' 

3. Repeat N times and estimate e via ;in (5.42) or xu in (5.43). 
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EXAMPLE 5.15 Random Walk on the Integers 

Consider the random walk on the integers of Example 1.10 on page 19, with prob- 
abilities p and q for jumping up or down, respectively. Suppose that p < q, so that 
the walk has a drift toward -m. Our goal is to estimate the rare-event probability 
C of reaching state K before state 0, starting from state 0 < k << K ,  where K is a 
large number. As an intermediate step consider first the probability of reaching K in 
exactly n steps, that is, P(X, = K )  = IE[IA,,], where A, = {X, = K } .  We have 

f(X1:n) = f(s1 I k )  f ( x 2  1x1) f(53 1x2). ' ' f(zn I %-l) 7 

where the conditional probabilities are either p (for upward jumps) or q (for down- 
ward jumps). If we simulate the random walk with different upward and downward 
probabilities, 6 and i j ,  then the importance sampling pdf g(x1:,) has the same form as 
f(xl:,) above. Thus, the importance weight after Step t is updated via the incremental 
weight 

The probability P(A,) can now be estimated via importance sampling as 

. N  

(5.82) 
2=1 

where the paths i = 1,. . . , N are generated via g. rather than f and Wi,, is 
the likelihood ratio of the i-th such path. Returning to the estimation of e, let 7 be the 
first time that either 0 or K is reached. Writing I { x t = ~ )  = H(Xl,t), we have 

00 

e = I E ~ [ I { ~ , = ~ } ]  = IE~[H(x~:,)I = CE[H(X~:,) I{T=n}] 
n=l 

00 

n=l x 

with W, the likelihood ratio of XI:,, which can be updated at each time t by multi- 
plying with either p / p  or q / i j  for upward and downward steps, respectively. Note that 

is indeed a function of x, = (21, . . . , x,). This leads to the same estimator as 
(5.82) with the deterministic n replaced by the stochastic 7 .  It can be shown (see, for 
example, [5]) that choosing 6 = q and i j  = p ,  that is, interchanging the probabilities, 
gives an efficient estimator fore. 
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5.7.1 Nonlinear Filtering for Hidden Markov Models 

This section describes an application of SIS to nonlinear filtering. Many problems in 
engineering, applied sciences, statistics, and econometrics can be formulated as hidden 
Markov models (HMM). In its simplest form, an HMM is a stochastic process { (Xt, Y,)} 
where X t  (which may be multidimensional) represents the true state of some system and 
Yt represents the observed state of the system at a discrete time t. It is usually assumed 
that { X , }  is a Markov chain, say with initial distribution f(z0) and one-step transition 
probabilities J ( x t  I It is important to note that the actual state of the Markov chain 
remains hidden, hence the name HMM. All information about the system is conveyed by 
the process {Y , } .  We assume that, given X O ,  . . . , X t ,  the observation Yt depends only 
on X t  via some conditional pdf f (y t  I x,). Note that we have used here a Bayesian style 
of notation in which all (conditional) probability densities are represented by the same 
symbol f .  We will use this notation throughout the rest of this section. We denote by 
XI:, = (XI , .  . . , Xt) and Ylrt = (Y1, . . . , yt) the unobservable and observable sequences 
up to time t ,  respectively - and similarly for their lowercase equivalents. 

The HMM is represented graphically in Figure 5.2. This is an example of a Bayesian 
network. The idea is that edges indicate the dependence structure between two variables. For 
example, given the states XI,  . . . , Xt, the random variable Yt is conditionally independent 
of XI,  . . . , Xt-l, because there is no direct edge from Yt to any of these variables. We thus 
have J(yt  I XIxt )  = f (y t  I xt), and more generally 

Figure 5.2 A graphical representation of the HMM 

Summarizing, we have 

X t  - f (.t 
yt - f (YL ~ - 1 )  - state equation 

xt) - observation equation. 

EXAMPLE 5.16 

An example of (5.84) is the following popular model: 

(5.84) 

(5 .85 )  

where cpl(.) and cp2(.) are given vector functions and € l t  and .5gt are independent 
d-dimensional Gaussian random vectors with zero mean and covariance matrices C1 
and C2, respectively. 
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Our goal, based on an outcome ~ 1 : ~  of YlZt ,  is to determine, or estimate on-line, the 
following quantities: 

1. The joint conditional pdf f ( x ~ : ~  I ~ 1 : ~ )  and, as a special case, the marginal conditional 
pdf f(zt I y 1 : t ) ,  which is called thejlteringpdf. 

2. The expected performance 

It is well known [8] that the conditional pdf f ( x l Z t  1 ~ 1 : ~ )  or the filtering pdf f (xt I y 1 : t )  

can be found explicitly only for the following two particular cases: 

(a) When 9 1  (x) and 9 2  (x) in (5.85) are linear, the filtering pdf is obtained from the cele- 
brated Kalmanjlter. The Kalman filter is explained in Section A.6 of the Appendix. 

(b) When the {xt} can take only a finite number, say K ,  ofpossible values, forexample, as 
in binary signals, one can calculate f(xt I ypt) efficiently with complexity 0 ( K 2  t ) .  
Applications can be found in digital communication and speech recognition; see, for 
example, Section A.7 of the Appendix. 

Because the target pdf /(xpt 1 ~ 1 : ~ )  for the general state space model (5.84) is difficult 
to obtain exactly, one needs to resort to Monte Carlo methods. To put the nonlinear filtering 
problem in thesequentialMonteCarloframeworkofSection5.7,wefirst write f ( x ~ : ~  1 ~ 1 : ~ )  

in sequential form, similar to (5.79). A natural candidate for the “auxiliary” pdf at time t is 
the conditional pdf f ( x ~ , ~  I Y ~ : ~ ) .  That is, only the observations up to time t are used. By 
Bayes’ rule we have for each t = 1, . . . , n, 

f (x1 : t  I Y1:t)  

f ( x 1 : t - 1  I Y1:t-1) 

- - f (Y1:t  I X l : t ) f ( X l : t )  f(Y1:t-1) 

f (Yl : t )  J(Y1:t-1 I X l : t - l ) f ( X l : t - l )  

- - f(Y1:t-1 I X1:t-1) f ( Y t  I .t) f (x1 : t -1 )  f(zt I z t - 1 )  

f (Y1:t-1)  f ( Y t  I Y1:t-1) 

f (Y1:t-1) 

f (Y 1:t-1 I X1:t-1 I f ( x 1 : t -  1) 

(5.87) 

where we have also used (5.83) and the fact that f(xt I X ~ : ~ - I )  = f(x~ I x t - l ) ,  t = 1 , 2 , .  . . 
by the Markov property. 

This result is of little use for an exact calculation of f(xl:, I y l : , ) ,  since it requires com- 
putation of f (y t  I y 1 : ~ - 1 ) ,  which involves the evaluation of complicated integrals. However, 
if both functions (pdfs) f(zt Ixt-l) and f (y t  I z t )  can be evaluated exactly (which is a rea- 
sonable assumption), then SIS can be used to approximately simulate from f ( x ~ , ~  1 ~ 1 : ~ )  

as follows: Let gt(xlrt 1 ypt) be the importance sampling pdf. We assume that, similar to 
(5.74), we can write gt(xl:t I ylrt) recursively as 
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Then, by analogy to (5.77), and using (5.87) (dropping the normalization constant 
f (yt  l y ~ : ~ - ~ ) ) ,  we can write the importance weight wt of a path ~ 1 : ~  generated from 
gt(x1:t I y1:t) recursively as 

(5.89) 

A natural choice for the importance sampling pdf is 

d " t  IXl:t-l,Yl:t) = f(.t IXt-1) , (5.90) 

in which case the incremental weight simplifies to 

U t  = f ( Y t  I X t ) .  (5.91) 

With this choice of sampling distribution, we are simply guessing the values of the hidden 
process { X,} without paying attention to the observed values. 

Once the importance sampling density is chosen, sampling from the target pdf 
f(xpt 1 ~ 1 : ~ )  proceeds as described in Section 5.7. For more details, the interested reader 
is referred to [8], [23], and [261. 

W EXAMPLE 5.17 Bearings-Only Tracking 

Suppose we want to track an object (e.g., a submarine) via a radar device that only 
reports the angle to the object (see Figure 5.3). In addition, the angle measurements 
are noisy. We assume that the initial position and velocity are known and that the 
object moves at a constant speed. 

Let X t  = (pit, w1trp2,, ~ 2 ~ ) ~  be the vector of positions and (discrete) velocities 
of the target object at time t = 0, 1,2 ,  . . ., and let Yt be the measured angle. The 
problem is to track the unknown state of the object Xt based on the measurements 
{ yt } and the initial conditions. 

Figure 5.3 Track the object via noisy measurements of the angle. 

The process ( X , ,  Yt), t = 0 , 1 , 2 , .  . . is described by the following system: 

Xt = A Xt-1 + €11 

Yt = arctan(mt,pzt) + €2, . 

Here arctan(u,  w) denotes the four-quadrant arc-tangent, that is, arctan(w/u) + c, 
where c is either 0, *7r, or f . r r / Z ,  depending on the quadrant in which (u, u )  lies. 
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The random noise vectors { € I t }  are assumed to be N(0, C l )  distributed, and the 
measurement noise €gt is N(0, “22) distributed. All noise variables are independent 
of each other. The matrix A is given by 

1 1 0 0  

A =  (: : : 
0 0 0 1  

The problem is to find the conditional pdf f ( x t  I y l Z t )  and, in particular, the ex- 
pected system state E[Xt I y ~ : ~ ] .  

We indicate how this problem can be solved via SIS. Using (5.90) for the sampling 
distribution means simply that X t  is drawn from a N ( A z t - l ,  C l )  distribution. As 
a consequence of (5.91) the incremental weight, ut  = f (yt  I z t ) ,  is equal to the 
value at yt of the normal pdf with mean arctan(plt,pzt) and variance 0;. The 
corresponding SIS procedure is summarized below. We note that the SIS procedure 
is Often implemented in parallel; that is, instead of computing the {wkt}  and { X k t }  

in series, one can compute them at the same time by running N parallel processes. 

SIS Procedure 

1. Initialize X O .  

2 .  For each t = 1,. . . , n draw X t  - N(AXt - l ,  C I ) .  

3. Update the weights w1 = I L ~  w t - l ,  where wo = 1 and 

4. Repeat N times and estimate the expected system state at time t as 

where xkt  and W k t  are the state and weight for the k-th sample, respectively. 

As a numerical illustration, consider the case where 0 2  = 0.005 and 

with “1  = 0.001. Let Xo - N (pol CO), with po = (-0.05,0.001,0.2, -0.055)T, 
and 

0 0.012 7 (I. 0 

0.52 0 0 
0 0.0052 0 

0 0.32 0 ‘ 
Ca = 0.l2 

Figure 5.4 shows how the estimated process { Z t }  tracks the actual process {xt} over 
100 time steps. 
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I 
-0.5 -0.4 -0.3 -0.2 -0.1 0 

Figure 5.4 Tracking with SIS. 

1 

As time increases, the tracking rapidly becomes more unstable. This is a con- 
sequence of the degeneracy of the likelihood ratio. Indeed, after a few iterations, 
only a handful of samples contain the majority of the importance weight. This yields 
high variability between many runs and provides less reliable estimates. To prevent 
this degeneracy, several heuristic resampling techniques have been proposed; see, for 
example, [8]. 

5.8 THE TRANSFORM LIKELIHOOD RATIO METHOD 

The transform likelihood ratio (TLR) method is a simple, convenient, and unifiing way of 
constructing efficient importance sampling estimators. To motivate the TLR method, we 
consider the estimation of 

e = q"X)I t (5.92) 

where X - f(x). Consider first the case where X is one-dimensional (we write X instead 
of X). Let F be the cdf of X .  According to the IT method, we can write 

x = F - ' ( U ) ,  (5.93) 

where CJ N U ( 0 , l )  and F-' is the inverse of the cdf F .  Substituting X = F-'(CJ) into 
C = J E [ H ( X ) ] ,  we obtain 

e = I E [ H ( F - ' ( u ) ) ]  = I E [ H ( u ) ]  . 

Notethatincontrasttoe = E [ H ( X ) ] ,  wheretheexpectationistakenwithrespecttof(z), 
in C = [ H ( U ) ] ,  the expectation is taken with respect to the uniform U(0,l) distribution. 
The extension to the multidimensional case is simple. 
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Let h(u; v) be another density on (0, I) ,  parameterized by some reference parameter v, 
with h(u; u)  > 0 for all 0 < u < 1 (note that u is a variable and not a parameter). An 
example is the Beta(v, 1) distribution, with density 

h(u; v) = vuv-1, u E ( 0 , l )  , 

h(u; v) = v (1 - u)-l, u E (0 , l )  . 

with v > 0, or the Beta(1, v) distribution, with density 

Using Beta( 1, v) as the importance sampling pdf, we can write l as 

e = IE,[H(U) W ( U ;  v)] , 

where U - h(u; v). and 

(5.94) 

(5.95) 

is the likelihood ratio. The likelihood ratio estimator of C is given by 

N 

e^= N-'  1 k ( U k )  w ( u k ;  U )  , 

where U1,.  . . , UN is a random sample from h(u; v), We call (5.96) the inverse transform 
likelihoodratio (ITLR) estimator; see Kroese and Rubinstein [ 191. 

(5.96) 
k = l  

Suppose, for example, X N Weib(cr, A), that is, X has the density 

f(z; a ,  A) = aA(Az)a-1e-(X2.)u. (5.97) 

Note that a Weibull random variable can be generated using the transformation 

x = A-1 Z'I", (5.98) 

where 2 is a random variable distributed Exp( 1). Applying the IT method, we obtain 

x = F- ' (u)  = A-'(- ln(1 - u ) ) " ~ ,  (5.99) 

and k ( U , )  @(Ut;  v) in (5.96) reduces to H(A-' (- ln(1 - Ui))'Ia)/h(Ui; u ) .  
The TLR method is a natural extension of the ITLR method. It comprises two steps. 

The first is a simple change of variable step, and the second involves an application of the 
SLR technique to the transformed pdf. 

To apply the first step, we simply write X as a function of another random vector, say as 

x = C(Z) . (5.100) 

If we define 
R Z )  = H ( G ( Z ) )  9 

then estimating (5.92) is equivalent to estimating 

e = E[H(Z)] . (5.101) 

Note that the expectations in (5.92) and (5.101) are taken with respect to the original density 
of X and the transformed density of Z. As an example, consider again a one-dimensional 
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case and let X - Weib(cu, A). Recalling (5.98), we have H ( Z )  = H(X-' Z 1 / a )  and thus, 

To apply the second step, we assume that Z has a density h(z;O) in some class of 
densities { h ( z ;  q)}. Then we can seek to estimate e efficiently via importance sampling, 
for example, using the standard likelihood ratio method. In particular, by analogy to (5.59). 
we obtain the following estimator: 

e = IqH(A-1 Z'/")]  . 

where 

(5.102) 

and zk - h(z ;  q). We shall call the SLR estimator (5.102) based on the transformation 
(5.100), the TLR estimator. As an example, consider again the Weib(a, A) case. Using 
(5.98). we could take h(z;  7 )  = e-qz as the sampling pdf, with 7 = 6 = 1 as the nominal 
parameter. Hence, in this case, Fin (5.102) reduces to 

with 

(5.103) 

and Zk - Exp(7). 

analogy to (5.64), the following CE program: 
To find the optimal parameter vector q* of the TLR estimator (5.102) we can solve, by 

max ~ ( q )  = max E, [ H ( z )  W ( z ;  e, 7) In h ( z ;  711 (5.104) 
11 11 

and similarly for the stochastic counterpart of (5.104). 
Since Z can be distributed quite arbitrarily, one would typically choose its distribution 

from an exponential family of distributions (see Section A.3 of the Appendix), for which 
the optimal solution q* of (5.104) can be obtained analytically in a convenient and simple 
form. Below we present the TLR algorithm for estimating e = E,[H(X)], assuming that 
X is a random vector with independent, continuously distributed components. 

Algorithm 5.8.1 (TLR Algorithm) 

I ,  For a given random vector X ,  find a transformation G such that X = G ( Z ) ,  with 
Z - h(z;  0 ) .  For example, take Z with all components being iid and distributed 
according to an exponential family (e.g., Exp( 1) ) .  

2. Generate a random sample z1,. . . , Z N  from h(.; 7) .  

3. Solve the stochastic counterpart of the program (5.104) @or a one-parameter expo- 
nential family parameterized by the mean, apply directly the analytic solution (A. IS)). 
Iterate gnecessary Denote the solution by 6. 
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4. Generate a (larger) random sample Z1, . , . , ZN, from h(.; ?j) and estimate L = 

The TLR Algorithm 5.8.1 ensures that as soon as the transformation X = G(Z) is 
chosen, one can estimate C using the TLR estimator (5.102) instead of the SLR estimator 
(5.59). Although the accuracy of both estimators (5.102) and (5.59) is the same (Rubinstein 
and Kroese [29]), the advantage of the former is its universality and it ability to avoid the 
computational burden while directly delivering the analytical solution of the stochastic 
counterpart of the program (5.104). 

lE[H(G(Z))] via the TLR estimator (5.102). takingr] = 6. 

5.9 PREVENTING THE DEGENERACY OF IMPORTANCE SAMPLING 

In this section, we show how to prevent the degeneracy of importance sampling estimators. 
The degeneracy of likelihood ratios in high-dimensional Monte Carlo simulation problems 
is one of the central topics in Monte Carlo simulation. To prevent degeneracy, several 
heuristics have been introduced (see, for example, [8], [23], [26]), which are not widely 
used by the Monte Carlo community. In this section we first present a method introduced 
in [22] called the screening method. Next, we present its new modification, which quite 
often allows substantial reduction of the dimension of the likelihood ratios. By using this 
modification we not only automatically prevent the degeneracy of importance sampling 
estimators but also obtain variance reduction. 

To motivate the screening method, consider again Example 5.14 and observe that 
only the first two importance sampling parameters of the five-dimensional vector ? = 
(51, G2, G3, G4, G5) are substantially different from those in the nominal parameter vector 
u = (u1, ~ 2 ~ 2 1 . 3 ,  214, u5). The reason is that the partial derivatives of l with respect to u1 

and u2 are significantly larger than those with respect to us, 214, and us. We call such ele- 
ments u1 and 212 bottleneck elements. Based on this observation, one could use instead of 
the importancesampling vector? = (51,52,G3,G4,$5) the vector? = (51,52, ug,u4,u5), 
reducing the number of importance sampling parameters from five to two. This not only 
has computational advantages - one needs to solve a two-dimensional variance or CE min- 
imization program instead of a five-dimensional one - but also leads to further variance 
reduction since the likelihood ratio term W with two product terms is less “noisy” than the 
one with five product terms. 

To identify the bottleneck elements in our bridge example we need to estimate, for every 
i = 1, . . . , 5 ,  the partial derivative 

Observe that for general w # u we obtain 
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0 
1 
2 
3 

Point estimators for al(u)/aui,  based on a random sample X1, .  . . , XN from f(x; v), 
are thus found as the sample mean, say M ,  of the random variables 

1 1 0.3 0.2 0.1 0.0623 0.0123 
2.1790 2.5119 0.3 0.2 0.1 0.0641 0.0079 
2.3431 2.4210 0.3 0.2 0.1 0.0647 0.0080 
2.3407 2.2877 0.3 0.2 0.1 0.0642 0.0079 

1 N .  (5.105) 

The corresponding (1 -a)  confidence interval is given (see (4.7)) by ( M  * 21-+ S / f i ) ,  
with S being the sample standard deviation of (5.105). 

Table 5.2 presents point estimates and 95% confidence intervals for al(u)/au,, i = 
1 , . . . ,  5,withC(u)=P(S(X) 1.5)andu= (l,1,0.3,0.2,0.1),asinExample5.14.The 
partial derivatives were estimated using the initial parameter vector u = (1,1,0.3,0.2,0.1) 
and a sample size of N = lo4. The bottleneck cuts, corresponding to the largest values of 
the partial derivatives, are marked in the last column of the table by asterisks. 

Table 5.2 Point estimates and confidence intervals for 6"(u)/du,, i = 1, . . . , 5 .  

i PE CI bottleneck 
1 8.7 e-2 (7.8 e-2,9.5 e-2) * 
2 9.2 e-2 (8.3 e-2, 1.0 e-1) * 
3 - 6.0 e-3 (-2.2 e-2, 1 .O e-2) 
4 4.5 e-2 (1.5 e-2,7.4 e-2) 
5 5.5 e-2 (6.4 e-4, 1.1 e-1) 

We see in Table 5.2 that not only are the partial derivatives with respect to the first two 
components larger than the remaining three, but also that the variability in the estimates is 
much smaller for the first two. So, we can exclude the remaining three from updating and 
thus proceed with the first two. 

Table 5.3 presents data similar to those in Table 5.1 using the screening method, that 
is, with (q, vz1 u g ,  u4, us) starting from u = (1,1,0.3,0.2,0.1) and iterating again (5.70) 
(for the first iteration) and (5.69) two more times. One can see that the results are very 
similar to the ones obtained in Table 5.1. 

Table 5.3 Iterating the two-dimensional vector ? using the screening method. 

iteration I V I F  RE 
A 

In general, large-dimensional, complex simulation models contain both bottleneck and 
nonbottleneck parameters. The number of bottleneck parameters is typically smaller than 
the number of nonbottleneck parameters. Imagine a situation where the size (dimension) 
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of the vector u is large, say 100, and the number of bottleneck elements is only about 10- 
15. Then, clearly, an importance sampling estimator based on bottleneck elements alone 
will not only be much more accurate than its standard importance sampling counterpart 
involving all 100 likelihood ratios (containing both bottleneck and nonbottleneck ones), but 
in contrast to the latter will not be degenerated. 

The bottleneck phenomenon often occurs when one needs to estimate the probability 
of a nontypical event in the system, like a rare-event probability. This will be treated in 
Chapter 8. For example, if one observes a failure in a reliability system with highly reliable 
elements, then it is very likely that several elements (typically the less reliableones) forming 
a minimal cut in the model all fail simultaneously. Another example is the estimation of 
a buffer overflow probability in a queueing network, that is, the probability that the total 
number of customers in all queues exceeds some large number. Again, if a buffer overflow 
occurs, it is quite likely that this has been caused by a buildup in the bottleneck queue, 
which is the most congested one in the network. 

Recall that for high-dimensional simulation models the CE updating formula (5.65) is 
useless, since the likelihood ratio term W is the product of a large number of marginal 
likelihoods, and will cause degeneracy and large variance of the resulting importance Sam- 
pling estimator On the other hand, importance sampling combined with screening and 
involving only a relatively small number of bottleneck elements (and thus a product of a 
relatively small number of likelihoods) will not only lead to tremendous variance reduction 
but will produce a stable estimator as well. 

If not stated otherwise, we will deal with estimating the following performance: 

where H(X) is assumed to be an arbitrary sample function and X is an n-dimensional 
random vector with pdf f(x; u). A particular case is H ( X )  = I { s p ~ 2 ~ } ,  that is, H(X) 
is an indicator function. In Chapter 8 we apply our methodology to rare events, that is, we 
assume that y is very large, so e is a rare-event probability, say e 5 

Next, we introduce a modification of the above screening method [22], where we screen 
out the bottleneck parameters using the estimator G in (5.70) rather than (the estimator of) 
the gradient of l(u). As we shall see below, there are certain advantages in using the vector 
G for identifying the bottleneck parameters rather than its gradient. 

5.9.1 The Two-Stage Screening Algorithm 

Here we present a two-stage screening algorithm, where at the first stage we identifi the 
bottleneck parameters and at the second stage wejndthe  estimator of the optimal bottleneck 
parameter vector by solving the standard convex CE program (5.66). For simplicity, we 
assume that the components of X are independent and that each component is distributed 
according to a one-dimensional exponential family that is parameterized by the mean - the 
dependent case could be treated similarly. Moreover, H ( x )  is assumed to be a monotonically 
increasing function in each component of x. A consequence of the above assumptions is 
that the parameter vector v has dimension n. That is, v = ( ~ 1 ,  . . . , 7 i n ) .  

Let B c { 1,. , . , n} denote the indices of the bottleneck parameters and B denote the 
indices of the nonbottleneck parameters. For any n-dimensional vector y, let yv denote 
the IVI-dimensional vector with components {yt, i E V } .  
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As soon as B is identified in the first stage and the corresponding optimal parameter 
vector, vh say, is estimated in the second stage, via G B  say, one can estimate ! via 

(5.106) 

where X ~ B  is the k-th sample of Xg, 

and fB is the pdf of Xg. We call this estimator the screening estimator. 
Note that u and the nonscreening importance sampling estimator G of the optimal param- 

eter v* can be written as u = ( U B ,  ug) and G = ( G B ,  G B ) .  where us and G B  denote the 
nonbottleneck parameter vectors of the original and estimated reference parameter vectors 
of the standard importance sampling estimator (5.59), respectively. It is crucial to under- 
stand that in the screening estimator (5.106) we automatically set 3, = UB.  Consequently, 
because of the independence of the components, the likelihood ratio term W(X) reduces 
to a product of IBI quotients of marginal pdfs instead of the product of n such quotients. 
Note also that the optimal parameter vector G B  in (5.106) can be obtained by using the stan- 
dard convex CE program (5.65), provided that the pair (u, v) is replaced by its bottleneck 
counterpart (UB, VB). 

For convenience we rewrite (5.65) by omitting W (that is, X I ,  . . . , XN are generated 
under u). We have 

. N  

(5.107) 

Since (5.107) contains no likelihood ratios, the parameter vector G obtained from the solu- 
tion of (5.107) should be quite accurate. 

We shall implement screening for both CE and VM methods. Recall that for the CE 
method the parameter vector G (and G B )  can often be updated analytically, in particular 
when the sampling distribution comes from an exponential family. In contrast, for VM the 
updating typically involves a numerical procedure. 

The identification of the size of the bottleneck parameter vector vh at the first stage 
is associated with a simple classification procedure that divides the n-dimensional vector 
C into two parts, namely, G = (CB,?B), such that VB z UB (componentwise), while 
G B  # UB (componentwise). Note that it can be readily shown, by analogy to Proposition 
A.4.2 in the Appendix, that if each component of the random vector X is from a one- 
parameter exponential family parameterized by the mean and if H ( x )  is a monotonically 
increasing function in each component of x, then each element of v;j is at least as large as 
the corresponding one of UB. We leave the proof as an exercise for the reader. 

Below we present a detailed two-stage screening algorithm based on CE, denoted as the 
CE-SCR algorithm. Its VM counterpart, the VM-SCR algorithm, is similar. At the first 
stage of our algorithm we purposely solve the same program (5.107) several times. By 
doing so we collect statistical data, which are used to identify the size of the estimator of 
Vk. 
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Algorithm 5.9.1 (CE-SCR Two-Stage Screening Algorithm) 

1. Initialize the set of bottleneck elements to Bo = { 1, . . . , n}. Set t = 1. 

2. Generate a sample XI, . . . , XN from f(x; u) and deliver the CE solution of the 
stochastic program (5.107). Denote the solution by Gt = (Gtl, . . . , Gtn). Note that 
v 1  is an n-dimensional parameter vector: 
A 

3. Calculate the relative perturbation for  each element &, a = 1, . . . , n as 

(5.108) 

4. < 6,  where 6 is some threshold value, say 6 = 0.1 (note that negative 6ti 
automatically satisjies bt, < 6), set Gli = ui, that is, identijj the a-th element of the 
vector v as a nonbottleneckparameter: Otherwise, identi3 it as a bottleneck one. 
Let Bl be the set of bottleneck elements at iteration t. 

5. Repeat Steps 2-4 several times, say d times, each time increasing t by 1 and updating 
the set Bt. Note that the sequence of sets Bt ,  t = 1, . . . , d is nonincreasing. 

6. Apply the standard CEprogram (5.107) to estimate the optimalparameter vector GB,  
with B = Bd. Deliver (5.106) as the resulting estimator of the rare-eventprobability 
e. 

It is important to note the following: 

1. As mentioned, under the present assumptions (independent components, each from a 
one-parameter exponential family parameterized by the mean, and H ( x )  monotoni- 
cally increasing in each component), the components of the v* are at least as large as 
the corresponding elements of u. Taking this into account, Algorithm 5.9.1 always 
identifies all elements i corresponding to 6i < 0 as nonbottleneck ones. 

2. Recall that Steps 2 4  are purposely performed d times. This allows one to better 
determine the nonbottleneck parameters, since it is likely that they will fluctuate 
around their nominal value ui and therefore 6i will become negative or very small in 
one of the replications. 

3. The advantage of Algorithm 5.9.1 compared to its gradient counterpart is that identi- 
fication of the bottleneck elements in the former is based on the relative perturbations 
6i (see (5.108)) with respect to the known original parameter values ui, while in the 
latter it is based on the absolute value of the gradient itself. It is not difficult to see 
that the former classifier, the so-called G-based classifier, is more natural to use than 
the gradient-based one. In addition, we found numerically that it identifies more 
accurately the actual bottleneck size. 
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5.9.1.7 Numerical Results We next present numerical studies with Algorithm 5.9.1 
for a generalization of the bridge system in Example 5.1, depicted in Figure 5.5. 

Figure 5.5 An m x n bridge system. 

The system consists of m. x n bridges arranged in a grid, and all bridges are of the form 
in Figure 5.1. Denote the lengths of the edges within the (i, j)-th bridge by Xijl , .  . . , Xijs. 
Then the length of the shortest path through bridge ( 2 ,  j) is 

Kj = min{Xijl + Xij4, Xij2 + Xij5, 
(5.109) 

Suppose we want to estimate the expected maximal length e of the shortest paths in all rows, 
that is, l! = IE[H(X)], with 

Xijl + Xij3 + Xij5, X i j ~  + Xij3 + Xijd} . 

In our numerical results, we assume that the components Xajk of the random vector x 
are independent and that each component has a Weib(a, u) distribution, that is, Xajk has 
the density 

j ( z ;  a ,  u )  = au(uz)a-1e-(U5)", 

with u = u,jk. Recall that such a Weibull random variable can be generated using the 
transformation X = u-l Z'/",  where Z is a random variable distributed Exp(1). We 
also assume that only u is controllable, while a is fixed and equals 0.2. We purposely 
selected some elements of u to be bottleneck ones and set 6 = 0.1. It is important to realize 
that the {Xyk} are here not parameterized by the mean. However, by taking 1/utjk as the 
parameter, we are in the framework described above. In particular, the relative perturbations 
are carried out with respect to ff&k and a /ua jk .  

Table 5.4 presents the performance of Algorithm 5.9.1 for the 1 x 1 (single-bridge) model 
(5.110). Here ulll = 1 and u112 = 1 are chosen to be the bottleneck parameters, whereas 
the remaining (nonbottleneck) ones are set equal to 2.  The notations in Table 5.4 are as 
follows: 

1. Mean, m a ,  and min e denote the sample mean, maximum, and minimum values of 
10 independently generated estimates of ? 

2. RE denotes the sample relative error for 

3. CPU denotes the average CPU time in seconds based on 10 runs. 

averaged over the 10 runs. 
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Table 5.4 Performance of Algorithm 5.9.1 for the single-bridge model with samples 
N = N1 = 500. 

CMC CE VM CE-SCR VM-SCR 
Mean e  ̂ 4.052 3.970 3.734 3.894 3.829 
Maxe^ 8.102 4.327 4.201 4.345 4.132 
Mine^ 1.505 3.380 3.395 3.520 3.278 
RE 0.519 0.070 0.078 0.076 0.068 
CPU 0.00 0.04 0.21 0.05 0.13 

From the results of Table 5.4, it follows that for this relatively small model both CE 
and VM perform similarly to their screening counterparts. We will further see (see also 
Chapter 8) that as the complexity of the model increases, VM-SCR outperforms its three 
alternatives, in particular CE-SCR. Note also that for this model, both CE and VM detected 
correctly at the first stage the two bottleneck parameters. In particular, Table 5.5 presents a 
typical dynamics of detecting the two bottleneck parameters at the first stage of Algorithm 
5.9.1 for a single-bridge model having a total of 5 parameters. In Table 5.5, t denotes the 
replication number at the first stage, while the 0s and 1s indicate whether the corresponding 
parameters are identified as nonbottleneck or bottleneck parameters, respectively. One can 
see that after two replications four bottleneck parameters are left, after six replications three 
are identified as bottleneck parameters, and after seven replications the process stabilizes, 
detecting correctly the two true bottleneck parameters. 

Table 5.5 
Algorithm 5.9.1 for the bridge model. 

npical dynamics for detecting the bottleneck parameters at the first stage of 

t u1 u2 7J3 u 4  '1L5 

0 1 1 1 1 1  
1 1 1 0 1 1  
2 1 1 0 1 1  
3 1 1 0 1 0  
4 1 1 0 1 0  
5 1 1 0 1 0  
6 1 1 0 1 0  
7 1 1 0 0 0  
8 1 1 0 0 0  
9 1 1 0 0 0  

Table 5.6 presents a typical evolution of the sequence {GL} in the single-bridge model 
for the VM and VM-SCR methods at the second stage of Algorithm 5.9.1. 

Table 5.6 Typical evolution of the sequence { G t }  for the VM and VM-SCR methods. 

VM VM-SCR 
h ^ ^ h  

t i i l  v2 v3 114 115 t G1 v2 713 v4 v5 

1.000 1.000 2.000 2.000 2.000 1.000 1.000 2 2 2 
1 0.537 0.545 2.174 2.107 1.615 1 0.555 0.599 2 2 2 
2 0.346 0.349 2.071 1.961 1.914 2 0.375 0.402 2 2 2 
3 0.306 0.314 1.990 1.999 1.882 3 0.315 0.322 2 2 2 
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One can clearly see that the bottleneck parameters decrease about three times after the 
third iteration, while the nonbottleneck ones fluctuate about their nominal value 'u. = 2. 

Table 5.7 presents the performance of Algorithm 5.9.1 for the 3 x 10 bridge model with 
six bottlenecks corresponding to the elements ~ 1 1 1 ,  2 ~ 1 1 2 ,  21211, 21212, 2 ~ 3 1 1 ~ 2 ~ 3 1 2 .  We set 
?/,111 = u 1 1 2  = u 2 1 1  = 2 1 ~ ~ 2  = 21311 = 21312 = 1, while the remaining (nonbottlenecks) 
values are set equal to 2. Note again that in this case both CE and VM found the true six 
bottlenecks. 

Table 5.7 
and sample size N = N1 = 1000. 

Performance of Algorithm 5.9.1 for the 3 x 10 model with six bottleneck elements 

CMC CE VM CE-SCR VM-SCR 
MeanT 16.16 16.11 14.84 16.12 15.67 
Max T 22.65 26.85 16.59 18.72 17.20 
M i n F  11.13 7.007 12.59 14.63 14.80 
RE 0.20 0.34 0.075 0.074 0.049 
CPU 0.00 0.49 68.36 0.73 27.54 

From the results in Table 5.7, it follows that without screening even the naive Monte Carlo 
outperforms the standard CE. However, using screening results in substantial improvement 
of CE. Finally, VM-SCR outperforms all four remaining alternatives. 

Other successful applications of the screening method will be given in Chapter 8 when 
dealing with estimations of probabilities of rare events for complex high-dimensional sim- 
ulation models. In the following subsection we present a case study using the screening 
method. 

5.9.2 Case Study 

In this section we present a case study with the screening method applied to the so-called 
CONITRA (composite generatiodtransmission) reliability model applied to the Brazilian 
electric power system [ 151. Our representation closely follows [21]. 

The generating system of the CONFTRA model comprises ng generating units, 
while the transmission system consists of nl loadgeneration busses connected by 
lines. Each generator and transmission line is assumed to be either functioning (1) 
or failed (0). The component states are gathered into the binary random vector X = 
( X I , .  . . , X n g ,  Xn,,+l,. . . , X n , f n l ) .  It is assumed that Xi N Ber(ui), i = 1,. . . , ng + nl 
and that the {Xi} are mutually independent. Thus, the joint pdf f(x; u) can be written as 

n,+ni 

f(x;u) = n fz(zz;u,), withf,(s,;u,) = uTt(l - u , ) ~ - ~ ~ ,  z, E {0,1}. (5.111) 

The analysis of the system is based on the linearized power flow model [ 151. If the power 
flow in one or more circuits exceeds the respective maximum flow capacity, the system will 
be overloaded. The goal is to estimate the expected unserved energy (EUE) in the system. 
For a given state vector x the unserved energy, H ( x ) ,  corresponds to the minimum load 
curtailments required to relieve the system overloads. For each scenario x, the unserved 

1=1 
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energy H ( x )  is obtained from the solution of some linearprogrammingproblem, the details 
of which are not important here (but see [15]). The EUE can thus be written as C(u) = 
E,[H(X)], and the corresponding CMC estimator is C(U) = $ cr=l H ( X k ) ,  where 
XI,  . . . , XN is a random sample from f(x; u), and for each xk, k = 1, . . . , N the function 
H ( X k )  is obtained from the solution of a linear program. 

Using the CMC estimator is typically very time-consuming. It requires many samples of 
H ( X )  to obtain an accurate (small-variance) estimator e (̂u) of C(u). This, in turn, implies 
that one is required to solve the linear program many times. 

To speed up the simulation process, we shall use a parametric importance sampling pdf 
j(x; v). We can use the CE program (5.65) to find a “good” reference vector v, where 
we choose the original parameter vector u as our (trial) vector w. After G is obtained, we 
iterate (5.65) once more with w = v^ to obtain the final v. Since the components of X 
are independent and belong to an exponential family parameterized by the mean, we can 
directly apply the explicit updating formulas (5.69) to solve (5.65). 

5.9.27 Numerical Results Here we present numerical results for the CONFTRA 
model, which includes 32 generators connected by 38 lines. We took a sample size N = 500 
for each CE iteration and a sample N = 1000 for the resulting importance sampling 
estimator. 

Define the efficiency of the importance sampling estimator t(u; v) relative to the CMC 
one F(u) as 

Var, (3~)) 
& =  

Var,(Z(u; v)) ‘ 

Table 5.8 represents the original values u, and the reference values vi obtained by using 
(5.65). The numbers 1-32 correspond to the generators and the numbers 33-70 correspond 
to the lines. Note that the data are presented only for those lines and generators for which 
21% differs from ui, i = 1,. . . , n by at least 0.001. 

Table 5.8 The original parameters ui and the reference parameters zl, obtained from (5.65). 

i i 

1 
3 
5 
6 
I 
8 
9 
10 
12 
13 
14 
15 
18 
20 
21 

0.1000 
0.0200 
0.1000 
0.1000 
0.0200 
0.0200 
0.0400 
0.0400 
0.0500 
0.0500 
0.1500 
0.0200 
0.0200 
0.0400 
0.0400 

0.1091 
0.0303 
0.1061 
0.1064 
0.0369 
0.0267 
0.0603 
0.0814 
0.1462 
0.1461 
0.1405 
0.0244 
0.0233 
0.0773 
0.0680 

22 
23 
26 
27 
28 
30 
31 
32 
34 
40 
42 
49 
51 
53 
60 

0.1200 
0.1200 
0.0100 
0.0 100 
0.0100 
0.0400 
0.0400 
0.0800 
0.001 1 
0.001 1 
0.0040 
0.0877 
0.0013 
0.001 3 
0.00 13 

0.5909 
0.6570 
0.01 19 
0.0134 
0.0208 
0.0828 
0.0954 
0.424 1 
0.0015 
0.0025 
0.0057 
0.0925 
0.0248 
0.00 19 
0.0030 
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Table 5.9 represents the point estimators @u) and e^(u; v), their associated sample vari- 
ances, and the estimated efficiency E of the importance sampling estimator 4u; v) relative 
to the CMC one e^(u) as functions of the sample size N .  Note that in our experiments 
the CMC estimator used all N replications, while the importance sampling estimator used 
only N - N1 replications, since N1 = 1000 samples were used to estimate the reference 
parameter v. 

Table 5.9 
one F(u) as functions of the sample size N .  

The efficiency E of the importance sampling estimator ?(u; v) relative to the CMC 

N 

2000 
4000 
6000 
8000 
10000 
12000 
14000 
16000 
18000 
20000 

ê h, 
15.0260 
14.6215 
14.0757 
14.4857 
14.8674 
14.7839 
14.8053 
15.078 1 
14.8278 
14.8048 

qu; v) 

14.4928 
14.465 1 
14.4861 
14.4893 
14.4749 
14.4762 
14.4695 
14.4657 
14.4607 
14.46 13 

Var,(e^(u)) 

4.55 
1.09 
0.66 
0.53 
0.43 
0.35 
0.30 
0.28 
0.24 
0.22 

0.100 
0.052 
0.036 
0.027 
0.021 
0.017 
0.015 
0.013 
0.01 1 
0.010 

& 

45.5 
21.0 
18.3 
19.6 
20.5 
20.6 
20.0 
21.5 
21.8 
22.0 

From the data in Table 5.9, if follows that the importance sampling estimator ê (u; v) is 
more efficient than the CMC one by at least a factor of 18. 

Table 5.8 indicates that only a few of the reference parameters zli, namely those numbered 
12,13,22,23, and 32 out ofa totalof70, called the bottleneckparameters, differsignificantly 
from their corresponding original values ui, i = 1,. . . ,70. This implies that instead of 
solving the original 70-dimensional CE program (5.65) one could solve, in fact, only a 5- 
dimensional one. These bottleneck components could be efficiently identified by using the 
screening algorithm developed in [22]. Motivated by this screening algorithm, we solved 
the 5-dimensional CE program instead of the 70-dimensional one while keeping vi = ui for 
the remaining 65 parameters. In this case, we obtained better results than those in Table 5.9; 
the resulting importance sampling estimator e^(u; v) was more efficient than the CMC one 
by at least a factor of 20. The reason for that is obvious; the 65 nonbottleneck parameters 
v, # u, contributed to the importance sampling estimator (and, thus, to the data in Table 
5.9) nothing but noise and instability via the likelihood ratio term W .  

Note finally that we performed similar experiments with much larger electric power 
models. We found that the original importance sampling estimator qu; v) performs poorly 
for n 2 300. Screening, however, improves the performance dramatically. In particular, 
we found that the efficiency of the importance sampling estimator ê (u; v) with screening 
depends mainly on the number of bottleneck parameters rather than on n. Our extensive 
numerical studies indicate that the importance sampling method still performs quite reliably 
if n 6 1000, provided that the number of bottleneck parameters does not exceed 100. 
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PROBLEMS 

5.1 Consider the integral C = J:H(x)dx = ( b  - a ) E [ H ( X ) ] ,  with X - U(a ,b ) .  

Let X I , .  . . , XN be a random sample from U ( a ,  b). 
A ELl H(X,) and I 1  = 
is monotonic in x, then 

Consider the estimators 
E L 1 { H ( X i )  + H ( b  + a - Xi)}. Prove that if 

A 

In other words, using antithetic random variables is more accurate than using CMC. 

5.2 Estimate the expected length of the shortest path for the bridge network in Exam- 
ple 5.1. Use both the CMC estimator (5.8) and the antithetic estimator (5.9). For both 
cases, take a sample size of N = 100,000. Suppose that the lengths of the links XI, . . . , X5 

are exponentially distributed, with means 1,1,0.5,2,1.5.  Compare the results. 

5.3 Use the batch means method to estimate the expected stationary waiting time in a 
GZ/G/l queue via Lindley'sequation for the case where the interarrival times are Exp( 1/2) 
distributed and the service times are U[0 .5 ,2 ]  distributed. Take a simulation run of A4 = 
10,000 customers, discarding the first K = 100 observations. Examine to what extent 
variance reduction can be achieved by using antithetic random variables. 

5.4 Run the stochastic shortest path problem in Example 5.4 and estimate the performance 
C = E[II (X)]  from 1000 independent replications, using the given (Cl, C2, C3, C4) as the 
vector of control variables, assuming that X, - Exp(l), i = 1 , .  . . , 5 .  Compare the results 
with those obtained with the CMC method. 

5.5 Estimate the expected waiting time of the fourth customer in a GI/G/1 queue for the 
case where the interarrival times are Exp(l/2) distributed and the service times are U[0.5,2] 
distributed. Use Lindley's equation and control variables, as described in Example 5.5. 
Generate N = 1000 replications of W4 and provide a 95% confidence interval for E[W4]. 

5.6 Prove that for any pair of random variables (U,  V), 

Var(U) = E[ Var(U I V ) ]  + Var( E[U I V ]  ) 

(Hint: Use the facts that E[U2 ]  = E[ E[U2 I V] ] and Var(X) = E[X2] - 

5.7 
Exp(X) random variables that are independent of R. 

Let R - G(p) and define SR = c,"=, Xi, where XI,  X2, . . . is a sequence of iid 

a) Show, that SR - Exp(Xp). (Hint: the easiest way is to use transform methods 

b) For X = 1 and p = 1/10, estimate P(SR > 10) using CMC with a sample size 

c) Repeat b), now using the conditional Monte Carlo estimator (5.23). Compare the 

and conditioning.) 

of N = 1000. 

results with those of a) and b). 

5.8 Consider the random sum SR in Problem 5.7, with parametersp = 0.25 and X = 1. 
Estimate P( SR > 10) via stratification using strata corresponding to the partition of events 
{ R = l}, { R = 2}, . . . ,{ R = 7}, and { R > 7) .  Allocate a total of N = 10,000 samples 
via both Ni = piN and the optimal N; in (5.36), and compare the results. For the second 
method, use a simulation run of size 1000 to estimate the standard deviations {IT,}. 
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5.9 Show that the solution to the minimization program 

is given by (5.36). This justifies the stratified sampling Theorem 5.5.1. 

5.10 Use Algorithm 5.4.2 and (5.27) to estimate the reliability of the bridge relia- 
bility network in Example 4.1 on page 98 via permutation Monte Carlo. Consider 
two cases, where the link reliabilities are given by p = (0.3,0.1,0.8,0.1,0.2) and 
p = (0.95,0.95,0.95,0.95,0.95), respectively. Take a sample size of N = 2000. 

5.11 Repeat Problem 5.10, using Algorithm 5.4.3. Compare the results. 

5.12 This exercise discusses the counterpart of Algorithm 5.4.3 involving minimal paths 
rather than minimal cuts. A state vector x in the reliability model of Section 5.4.1 is called 
apa th  vector if H ( x )  = 1. If in addition H ( y )  = 0 for all y < x, then x is called the 
minimalpath vector. The corresponding set A = {i : xi = 1) is called the minimalpath 
set; that is, a minimal path set is a minimal set of components whosefunctioning ensures 
the functioning of the system. If A1 , . . . , A, denote all the minimal paths sets, then the 
system is functioning if and only if all the components of at least one minimal path set are 
functioning. 

a) Show that 

(5.112) 

b) Define 
Yk= r]: XI, k = l ,  . ' . ,  m, 

i E A k  

that is, Y k  is the indicator of the event that all components in Ai are functioning. 
Apply Proposition 5.4.1 to the sum S = cp=l Yk and devise an algorithm similar 
to Algorithm 5.4.3 to estimate the reliability T = P(S > 0) of the system. 

c) Test this algorithm on the bridge reliability network in Example 4.1. 

Prove (see (5.45)) that the solution of 5.13 

is 

5.14 
shifted exponential sampling pdf 

Let 2 - N(0,l). Estimate P(Z > 4) via importance sampling, using the following 

g(x )  = e-(z-4) , x 2 4 .  

Choose N large enough to obtain accuracy to at least three significant digits and compare 
with the exact value. 
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5.15 Verify that the VM program (5.44) is equivalent to minimizing the Pearson x2 
discrepancy measure (see Remark 1.14.1) between the zero-variance pdf g* in (5.46) and 
the importance sampling density g. In this sense, the CE and VM methods are similar, 
because the CE method minimizes the Kullback-Leibler distance between g* and g. 

5.16 Repeat Problem 5.2 using importance sampling, where the lengths of the links are 
exponentially distributed with means v1, . . . , v5. Write down the deterministic CE updating 
formulas and estimate these via a simulation run of size 1000 using w = u. 

5.17 Consider the natural exponential family ((A.9) in the Appendix). Show that (5.62), 
with u = 8 0  and v = 8, reduces to solving 

(5.1 13) 

5.18 
H ( X ) ,  with X - Exp(X0). Show that the corresponding CE optimal parameter is 

As an application of (5.1 13), suppose that we wish to estimate the expectation of 

Compare with (A.15) in the Appendix. Explain how to estimate A *  via simulation. 

5.19 Let X - Weib(a, XO). We wish to estimate e = Ex,[H(X)] via the SLR method, 
generating samples from Weib(cu, A) - thus changing the scale parameter X but keeping 
the scale parameter cr fixed. Use (5.1 13) and Table A.l in the Appendix to show that the 
CE optimal choice for X is 

Explain how we can estimate A *  via simulation. 

5.20 Let X I , .  . . , X, be independent Exp(1) distributed random variables. Let X = 
(XI,. . . , X,) and S(X) = X1 + . . .  + X,. We wish to estimate P(S(X) 2 y) via 
importance sampling, using X, - Exp(O), for all i. Show that the CE optimal parameter 
O* is given by 

with 5? = (XI + . . + X n ) / n  and E indicating the expectation under the original distri- 
bution (where each Xi - Exp(1)). 

5.21 Consider Problem 5.19. Define G ( z )  = z ' / ~ / A o  and H ( z )  = H ( G ( z ) ) .  
a) Show that if 2 - Exp(l), then G(2)  - Weib(cr, XO). 
b) Explain how to estimate l via the TLR method. 
c) Show that the CE optimal parameter for 2 is given by 

e* = ~,[fi(Z) W ( 2 ;  L V ) 1  
E,[ f i (Z )  w z ;  1,rl)l' 

where W ( 2 ;  1 , ~ )  is the ratio of the Exp(1) and Exp(7) pdfs. 
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5.22 Assume that the expected performance can be written as t = cEl a, &, where4  = s Hi(x) dx, and theail i = 1, . . . , m a r e  knowncoefficients. Let Q(x) = cpl ai Hi(x) .  
For any pdf g dominating Q(x), the random variable 

where X - g, is an unbiased estimator of e - note that there is only one sample. Prove 
that L attains the smallest variance when g = g*. with 

and that 

5.23 The Hit-or-Miss Method. Suppose that the sample performance function, H,  is 
bounded on the interval [0, b],  say, 0 < H ( s )  < c for 5 E [0, b] .  Let e = s H(x) dx = 
b l E [ H ( X ) ] ,  with X - U[O, b]. Define an estimator of l by 

where {(Xi, y t )  : j = 1,. . . N }  is a sequence of points uniformly distributed over the 
rectangle [0, b] x [0, c] (see Figure 5.6). The estimator e^h is called the hit-or-miss estimator, 
since a point ( X ,  Y )  is accepted or rejected depending on whether that point falls inside or 
outside the shaded area in Figure 5.6, respectively. Show that the hit-or-miss estimator has 
a larger variance than the CMC estimator, 

N 
b z= H(Xi) , 

i=l 

with XI, . . . , XN a random sample from U[O, b]. 

Figure 5.6 The hit-or-miss method. 
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Further Reading 

The fundamental paper on variance reduction techniques is Kahn and Marshal [ 161. There 
are a plenty of good Monte Carlo textbooks with chapters on variance reduction techniques. 
Among them are [lo], [13], [17], [18], [20], [23], [24], [26], [27], and [34]. For a com- 
prehensive study of variance reduction techniques see Fishman [ 101 and Rubinstein [28]. 
Asmussen and Glynn [2] provide a modem treatment of variance reduction and rare-event 
simulation. 

An introduction to reliability models may be found in [ 121. For more information on 
variance reduction in the presence of heavy-tailed distributions see also [I], [3], [4], and 
[71. 
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CHAPTER 6 

MARKOV CHAIN MONTE CARL0 

6.1 INTRODUCTION 

In this chapter we present a powerful generic method, called Markov chain Monte Carlo 
(MCMC), for approximately generating samples from an arbitrary distribution. This, as 
we learned in Section 2.5, is typically not an easy task, in particular when X is a random 
vector with dependent components. An added advantage of MCMC is that it only requires 
specification of the target pdf up to a (normalization) constant. 

The MCMC method is due to Metropolis e t  al. [ 171. They were motivated by computa- 
tional problems in statistical physics, and their approach uses the ideaof generating aMarkov 
chain whose limiting distribution is equal to the desired target distribution. There are many 
modifications and enhancement of the original Metropolis [ 171 algorithm, most notably the 
one by Hastings [ 101. Nowadays, any approach that produces an ergodic Markov chain 
whose stationary distribution is the target distribution is referred to as MCMC or Markov 
chain sampling [ 191. The most prominent MCMC algorithms are the Metropolis-Hastings 
and the Gibbs samplers, the latter being particularly useful in Bayesian analysis. Finally, 
MCMC sampling is the main ingredient in the popular simulated annealing technique [ 11 
for discrete and continuous optimization. 

The rest of this chapter is organized as follows. In Section 6.2 we present the classic 
Metropolis-Hastings algorithm, which simulates a Markov chain such that its stationary 
distribution coincides with the target distribution. An important special case is the hit-and- 
run sampler, discussed in Section 6.3. Section 6.4 deals with the Gibbs sampler, where the 
underlying Markov chain is constructed based on a sequence of conditional distributions. 

Sirnulalion and the Monte Curlo Method, Second Edition. By R.Y. Rubinstein and D. P. Kroese 
Copyright @ 2007 John Wiley & Sons, Inc. 
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Section 6.5 explains how to sample from distributions arising in the Ising and Potts models, 
which are extensively used in statistical mechanics, while Section 6.6 deals with applications 
of MCMC in Bayesian statistics. In Section 6.7 we show that both the Metropolis-Hastings 
and Gibbs samplers can be viewed as special cases of a general MCMC algorithm and 
present the slice and reversible jump samplers. Section 6.8 deals with the classic simulated 
annealing method for finding the global minimum of a multiextremal function, which is 
based on the MCMC method. Finally, Section 6.9 presents the perfect sampling method, 
for sampling exactly from a target distribution rather than approximately. 

6.2 THE METROPOLIS-HASTINGS ALGORITHM 

The main idea behind the Metropolis-Hastings algorithm is to simulate a Markov chain 
such that the stationary distribution of this chain coincides with the target distribution. 

To motivate the MCMC method, assume that we want to generate a random variable X 
taking values in X = { 1, . . . , m}, according to a target distribution { ~ i } ,  with 

where it is assumed that all {b,} are strictly positive, m is large, and the normalization 
constant C = Czl b, is difficult to calculate. Following Metropolis et al. [ 17, we construct 
a Markov chain {Xt, t = 0, 1, . . .} on X whose evolution relies on an arbitrary transition 
matrix Q = (q,,) in the following way: 

When Xt = i, generate a random variable Y satisfying P(Y = j) = q13, j E X .  

If Y = j ,  let 

Thus, Y is generated from the m-point distribution given by the i-th row of Q. 

J with probability a,, = min { e, l} = min { e, I} , 
z with probability 1 - al3. 

x f + l =  

It follows that { X t ,  t = 0,1, .  . .} has a one-step transition matrix P = ( p i j )  given by 

9 i j  ‘yij  1 i f i # j  

1 - CkZi q i k  a , k ,  if i = j . { P i j  = 

Now it is easy to check (see Problem 6.1) that, with a,j as above, 

=, P,, = rj P,,, i, j E X . (6.3) 

In other words, the detailed balance equations (1.38) hold, and hence the Markov chain is 
time reversible and has stationary probabilities { nE}. Moreover, this stationary distribution 
is also the limiting distribution if the Markov chain is irreducible and aperiodic. Note that 
there is no need for the normalization constant C in (6.1) to define the Markov chain. 

The extension of the above MCMC approach for generating samples from an arbitrary 
multidimensional pdf f(x) (instead of n,) is straightforward. In this case, the nonnegative 
probability transition function q(x ,  y) (taking the place of Q , ~  above) is often called thepm- 
posal or instrumental function. Viewing this function as a conditional pdf, one also writes 
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q(y I x) instead of q(x,  y).  The probability a(x, y)  is called the acceptanceprobabifity. 
The original Metropolis algorithm [ 171 was suggested for symmetric proposal functions, 
that is, for q(x, y) = q(y, x). Hastings modified the original MCMC algorithm to allow 
nonsymmetric proposal functions. Such an algorithm is called a Metropolis-Hustings al- 
gorithm. We call the corresponding Markov chain the Metropolis-Hustings Markov chain. 

In summary, the Metropolis-Hastings algorithm, which, like the acceptance-rejection 
method, is based on a trial-and-error strategy, is comprised of the following iterative steps: 

Algorithm 6.2.1 (Metropolis-Hastings Algorithm) 

Given the current state X t :  

1 .  Generate Y - q ( X t ,  y). 

2. Generate U N U(0, l )  anddeliver 

Y ,  is u I a ( X t , Y )  { X t  otherwise 
Xt+l = 

where 
+,Y) = min{e(x tY) , l l  I 

with 

(6.4) 

By repeating Steps 1 and 2 ,  we obtain a sequence X I ,  X z ,  . . . of dependent random vari- 
ables, with X t  approximately distributed according to f(x), for large t. 

Since Algorithm 6.2.1 is of the acceptance-rejection type, its efficiency depends on the 
acceptance probability ~ ( x ,  y). Ideally, one would like q(x ,  y) to reproduce the desired pdf 
f (y)  as faithfully as possible. This clearly implies maximization of ~ ( x ,  y). A common 
approach [19] is to first parameterize q(x, y)  as q(x ,  y; 8) and then use stochastic opti- 
mization methods to maximize this with respect to 8. Below we consider several particular 
choices of q(x,  y). 

EXAMPLE 6.1 Independence Sampler 

The simplest Metropolis-type MCMC algorithm is obtained by choosing the proposal 
function q(x ,  y) to be independent of x, that is, q(x,  y) = g(y) for some pdf g(y). 
Thus, starting from a previous state X a candidate state Y is generated from g(y) 
and accepted with probability 

This procedure is very similar to the original acceptance-rejection methods of Chap- 
ter 2 and, as in that method, it is important that the proposal distribution g is close to 
the target f .  Note, however, that in contrast to the acceptance-rejection method the 
independence sampler produces dependent samples. 
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w EXAMPLE 6.2 Uniform Sampling 

Being able to sample uniformly from some discrete set 9 is very important in many 
applications; see, for example, the algorithms for counting in Chapter 9. A simple 
general procedure is as follows. Define a neighborhoodstructure on 9. Any neigh- 
borhood structure is allowed, as long as the resulting Metropolis-Hastings Markov 
chain is irreducible and aperiodic. Let nx be the number of neighbors of a state x. 
For the proposal distribution, we simply choose each possible neighbor of the current 
state x with equal probability. That is, q(x, y) = l/nx. Since the target pdf f(x) 
here is constant, the acceptance probability is 

cv(x,y) = min{nx/ny, 1) . 

By construction, the limiting distribution of the Metropolis-Hastings Markov chain 
is the uniform distribution on 9. 

EXAMPLE 6.3 Random Walk Sampler 

In the random walk sampler the proposal state Y, for a given current state x, is given 
by Y = x + Z, where Z is typically generated from some spherically symmetrical 
distribution (in the continuouscase), such as N(0, C). Note that the proposal function 
is symmetrical in this case; thus, 

EXAMPLE6.4 

Let the random vector X = ( X I  , X2)  have the following two-dimensional pdf: 

f(x) = c exp(-(sqs; + zf + s; - 8x1 - 8z2)/2) , (6.8) 

where c =: 1/20216.335877is a normalization constant. The graph of this density is 
depicted in Figure 6.1. 

Figure 6.1 The density f (xi ,  52). 
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Suppose we wish to estimate e = lE[X1] via the CMC estimator 

N 1 F= C X t l ,  
t=l  

using the random walk sampler to generate a dependent sample { X , }  from f(x). A 
simple choice for the increment Z is to draw the components of Z independently, 
from a N(0, u2)  distribution for some a > 0. Note that if a is chosen too small, say 
less than 0.5, the components of the samples will be strongly positively correlated, 
which will lead to a large variance for On the other hand, for a too large, say 
greater than 10, most of the samples will be rejected, leading again to low efficiency. 
Below we choose a moderate value of a, say u = 2. The random walk sampler is 
now summarized as follows: 

Procedure (Random Walk Sampler) 

1. Initialize X I  = (X11, X12). Set t = 1. 

2. Draw Z1,22 - N(0,l) independently. Let Z = (21,Zz) and Y = X t  + 2 Z. 
Calculate a = a ( X t ,  Y )  as in (6.7). 

3. Draw U - U[O, 11. If U < a, let Xt+l = Y ;  otherwise, let Xt+l  = X t .  

4. Increase t by I .  If t = N (sample size) stop; otherwise, repeat from Step 2. 

We ran the above algorithm to produce N = lo5 samples. The last few hundred 
of these are displayed in the left plot of Figure 6.2. We see that the samples closely 
follow the contour plot of the pdf, indicating that the correct region has been sampled. 
This is corroborated by the right plot of Figure 6.2, where we see that the histogram 
of  the 2 1  values is close to the true pdf (solid line). 

Figure 6.2 
lines o f f .  The right plot shows the histogram of the z1 values along with the true density of XI. 

The left plot shows some samples of the random walk sampler along with several contour 

We obtained an estimate g= 1.89 (the true value is IE[X1] = 1.85997). To obtain a 
estimates the asymptotic variance, or employ the batch CI, we can use (4.18), where 
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means method of Section 4.3.2.1. Figure 6.3 displays the estimated (auto)covariance 
function R(k)  for k = 0 , 1 , .  . . ,400. We see that up to about 100 the covariances 
are nonnegligible. Thus, to estimate the variance of we need to include all nonzero 
terms in (4.17), not only the variance R(0) of X1.  Summing over the first 400 lags, 
we obtained an estimate of 10.41 for the asymptotic variance. This gives an estimated 
relative error for e^of 0.0185 and an 95% CI of (1.82,1.96). A similar CI was found 
when using the batch means method with 500 batches of size 200. 

2.5 I 

- - - - -. .- .__ _. 

100 200 300 400 
-0.5 

0 
k 

Figure 6.3 The estimated covariance function for the {Xtl} for lags k up to 400. 

While MCMC is a generic method and can be used to generate random samples virtually 
from any target distribution, regardless of its dimensionality and complexity, potential 
problems with the MCMC method are: 

1. The resulting samples are often highly correlated. 

2 .  Typically, it takes a considerable amount of time until the underlying Markov chain 
settles down to its steady state. 

3. The estimates obtained via MCMC samples often tend to have much greater variances 
then those obtained from independent sampling of the target distribution. Various 
attempts have been made to overcome this difficulty. For details see, for example, 
[13] and [19]. 

Remark 6.2.1 At this point we must stress that although it is common practice to use 
MCMC to sample from f ( x )  in order to estimate any expectation C = lE,[H(X)],  the 
actual target for estimating e is g*(x) c( IH(x)lf(x). Namely, sampling from g*(x) 
gives a minimum variance estimator (zero variance in the case H ( x )  0). Thus, it is 
important to distinguish clearly between using MCMC for generating from some difficult 
pdf f(x) and using MCMC to estimate a quantity such as C. For the latter problem, much 
more efficient techniques can be used, such as importance sampling; moreover, a good 
importance sampling pdf can be obtained adaptively, as with the CE and TLR methods. 
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6.3 THE HIT-AND-RUN SAMPLER 

The hit-and-run sampler, pioneered by Robert Smith [24], is among the first MCMC sam- 
plers in the category of line samplers [2]. As in the previous section, the objective is to 
sample from a target distribution f(x) on X c R". Line samplers afford the opportunity 
to reach across the entire feasible region X in one step. 

We first describe the original hit-and-run sampler for generating from a uniform dis- 
tribution on a bounded open region X of R". At each iteration, starting from a current 
point x, a direction vector d is generated uniformly on the surface of an n-dimensional 
hypersphere. The intersection of the corresponding bidirectional line (through x) and the 
enclosing box of X defines a line segment 2. The next pointy is then selected uniformly 
from the intersection of 5! and X. 

Figure 6.4 illustrates the hit-and-run algorithm for generating uniformly from the set 
X (the gray region), which is bounded by a square. Given the point x in 3, a random 
direction d is generated, which defines the line segment 14 = uv. Then a point y is chosen 
uniformly on A? = 2' n X, for example, by the acceptance-rejection method; that is, one 
generates a point uniformly on 2 and then accepts this point only if it lies in X. 

Figure 6.4 Illustration of the hit-and-run algorithm on a square in two dimensions. 

Smith [24] showed that hit-and-run asymptotically generates uniformly distributed points 
over arbitrary open regions of Rn. One desirable property of hit-and-run is that it can 
globally reach any point in the set in one step, that is, there is a strictly positive probability 
of sampling any neighborhood in the set. This property, coupled with a symmetry property, 
is important in deriving the limiting distribution. Lovhsz [ 141 proved that hit-and-run on 
a convex body in n dimensions produces an approximately uniformly distributed sample 
point in polynomial time, (3(n3), the best-known bound for such a sampling algorithm. He 
noted that the hit-and-run algorithm appears in practice to offer the most rapid convergence 
to a uniform distribution [14, 151. Hit-and-run is unique in that it only takes polynomial 
time to get out of a comer; in contrast, ball walk takes exponential time to get out of a comer 
1161. 

Note that the hit-and-run algorithm described above is a special case of the Metropolis- 
Hastings Algorithm 6.2.1, where the proposal function q(x, y )  is symmetric and the target 
f(x) is constant. It follows that each candidate point is accepted with probability I .  To 
generate from a general strictly positive continuous pdf f(x), one can simply modify the 
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above uniform hit-and-run algorithm by accepting the candidate y with probability 

+,Y) = m i n { f ( y ) / f W ,  1) 7 (6.9) 

as in (6.4) (note that q(y ,  x)/q(x,  y )  equals 1). Thus, the general hit-and-run algorithm 
with the above Metropolis acceptance criterion is summarized as follows [20]. 

Algorithm 6.3.1 (Continuous Hit-and-Run Algorithm) 

I .  Initialize XI E X andset t = 1. 

2. Generate a random direction dt according to a uniform distribution on the unit 
n-dimensional hypersphere. 

3. Generate a candidatepoint Y = Xt + Adt uniformly distributed over the line set 

At = {x:  x E 5? a n d x  = Xt + Adt, X E LR} . 

IfAt = 0, go to Step 2. 

4. Set 
Y withprobabilitycr(Xt,Y) in (6.9) 
X t  otherwise. xt+1 = 

5. I f  a stopping criterion is met, stop. Otherwise increment t and return to Step 2. 

Hit-and-run has been very successful over continuous domains. Recently an analogous 
sampler over a discrete domain has been developed in Baumert et al. [4]. Discrete hit- 
and-run generates two independent random walks on a lattice to form a bidirectional path 
that is analogous to the random bidirectional line generated in continuous hit-and-run. It 
then randomly selects a (feasible) discrete point along that path as the candidate point. By 
adding a Metropolis acceptance-rejection step, discrete hit-and-run converges to an arbitrary 
discrete target pdf f .  

Let X be a bounded subset of Z" -the set of n-dimensional vectors with integer valued 
coordinates - that is contained in the hyperrectangle 9 = {x E Z" : 1, 5 2, 5 u,,, i = 
1, . . . , n}. The discrete hit-and-run algorithm is stated below. 

Algorithm 6.3.2 (Discrete Hit-and-Run Algorithm) 

I .  Initialize XI E X andset t = 1 

2. Generate a bidirectional walk by generating two independent nearest neighbor ran- 
dom walks in 9 thatstart at X t  andend when they step out o f 9 .  One random walk is 
called the forward walk and the other is called the backward walk. The bidirectional 
walk may have loops but hasjnite length with probability I .  The sequence ofpoints 
visited by the bidirectional walk is stored in an ordered list, denoted Tt. 

T t .  

4. Set 

3. Generate a candidatepoint Y uniformly distributed on the intersection At = X n 

Y 
X t  otherwise. 

withprobability cr(Xt ,  Y )  in (6.9) { Xt+l = 

5. I f  a stopping criterion is met, stop. Otherwise, increment t and return to Step 2. 
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Figure 6.5 illustrates the discrete hit-and-run algorithm with a bidirectional walk starting 
at point x on the discrete points in a square. The feasible set 35- is indicated by the three 
disconnected shaded regions. The candidate poin ty  is chosen uniformly from the points 
in the bidirectional walk that are also in X. It is accepted according to the Metropolis 
acceptance probability, 

- 0 . .  . -0.. . . .O.. . . 0.. . .Q 

Figure 6.5 Illustration of the bidirectional walk in two dimensions. 

It is shown in [4] that in several situations the rate of convergence of the discrete hit- 
and-run algorithm is polynomial of order n4. Convergence to the target distribution has 
been proved in [4] for several variations of the bidirectional walk. One such candidate 
point generator, called sphere biwalk, not only converges to the target discrete pdf but also 
converges to continuous hit-and-run as the grid of the finite domain becomes finer [22] .  

The hit-and-run algorithm can be embedded within an optimization framework to yield 
two global optimization algorithms: hide-and-seek [20] and improving hit-and-run [26]. 
The latter has been applied successfully to practical problems including composite material 
design and shape optimization and has been shown to have polynomial complexity, on 
average, for a class of quadratic programs. In Section 6.8 we show how to turn an MCMC 
sampler into an optimization algorithm using simulated annealing. 

6.4 THE GlBBS SAMPLER 

The Gibbs sampler (Geman and Geman [ 6 ] )  uses a somewhat different methodology from 
the Metropolis-Hastings algorithm and is particularly useful for generating n-dimensional 
random vectors. The distinguishing feature of the Gibbs sampler is that the underlying 
Markov chain is constructed, in a deterministic or random fashion, from a sequence of 
conditional distributions. 
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Gibbs sampling is advantageous if  i t  is easier to sample from the conditional distributions 
than from the joint distribution. The essential idea of the Gibbs sampler- updating one part 
of the previous element while keeping the other parts fixed - is useful in many instances 
where the state variable is a random variable taking values in a general space, not just in 
Rn; see [ 111. 

Suppose that we wish to sample a random vector X = ( X I , .  . . , X,) according to a 
target pdf f(x). Let f(s, 1x1,. . . , z,-1, x,+1, . . . , 5,) represent the conditional pdf of the 
i-th component, X, ,  given the other components 21, .  . . , x,-1, x,+1,. . . ,x,. The Gibbs 
sampler consists of the following iterative steps. 

Algorithm 6.4.1 (Gibbs Sampler) 

A.  For a given Xt, generate Y = (Y1, . . . , Y,) as follows. 

I. Draw Y1 from the conditionalpdff(x1 I X Q ,  . . . , Xt,,). 

2. Draw Y ,  from f(x, I Y1,. . . , Y,-1, Xt,,+1,..  . , Xt,,), 
3. Draw Y, from f(x, I Y1,. . . , Y,-1). 

i = 2 , .  . . , R - 1. 

B. Let Xt+l  = Y .  

Note that in the Gibbs sampler all samples are accepted, in contrast to the Metropolis- 
Hastings algorithm. We will see in Section 6.7 that under mild conditions the limiting 
distribution of the process { X t ,  t = 1,2 ,  . . .}, generated via the Gibbs sampler, is precisely 
J ( x ) .  Moreover, under some other simple conditions, it can be shown (see [ 131, [19]) that 
the convergence to the desired pdf is geometrically fast. 

4 EXAMPLE 6.5 Example 6.4 (Continued) 

We shall show how to sample easily from the pdf f in (6.8) via the Gibbs sampler. 
Namely, writing 

where c l ( y )  depends only on y. we see that, conditional on y, X has a normal 
distribution with expectation 4/(1 + y2) and variance 1/(1 + 3’). The conditional 
distribution of Y given z follows in the same way. The corresponding Gibbs sampler 
is thus: 

Procedure 

1. Initialize X 1  and Y1. Set t = 1. 

2. If t is odd, draw 2 - N(0, l ) .  Put a = 1/(1 + Y;). Set Yt+l = 4a + 2 fi and 

3. If t is even, draw 2 N N(0, l ) .  Put a = 1/ (1  + X ; ) .  Set Xt+l = 4a + 2 fi and 

Xt+l = xt. 

Y,+1 = yt. 

4. Increase t by 1. If t = N (sample size) stop; otherwise, repeat from Step 2. 



THE GIBES SAMPLER 177 

Remark 6.4.1 (Systematic and Random Gibbs Samplers) Note that Algorithm 6.4.1 
presents a systematic coordinatewise Gibbs sampler. That is, the vector X is updated 
in a deterministic order: 1 ,2 ,  . . . , n, 1 , 2 ,  . . .. In the random coordinatewise Gibbs sampler 
the coordinates are chosen randomly, such as by generating them independently from a 
discrete uniform n-point pdf. In that case the Gibbs sampler can be viewed as an instance 
of the Metropolis-Hastings sampler, namely, with the transition function 

where y = (zl,. . . , xi-1, y,, x,+l,. . . , x n ) .  Since c,, f(y) can also be written as 
C,, f(x), we have 

so that the acceptance probability Q(X, y) is 1 in this case. 

Here is another example of an application of the Gibbs sampler. 

EXAMPLE 6.6 Closed Network of Queues in a Product Form 

Consider m customers moving among n queues in a closed queueing network. 
Denote by X , ( t )  the number of customers in queue i ,  i = 1 , .  . . , n, and let 
X(t) = ( X , ( t ) ,  . . . , X n ( t ) )  and x = (q,. . . , zn). It is well known [21] that if 
the limit 

lim P(X(t) = x) = n(x) 

exists, then, for exponentially distributed service times, the joint discrete pdf n(x) 
can be written in product form as 

t-cc 

(6.10) 

where the {fi(ici), xi 2 0 )  are known discrete pdfs, and C is a normalization 
constant. For a concrete example see Problem 6.1 1. 

The constant C is in general difficult to compute. To proceed, writing S(x) = c:=, zi and X* = {x : S(x) = m},  we have 
n 

(6.1 I )  
X E E *  1=l 

which requires the evaluation of the product of n pdfs for each x in the set X *. This 
set has a total of I X* I = (mTzT1) elements (see Problem 6. lo), which rapidly grows 
very large. 

We now show how to compute C based on Gibbs sampling. To apply the Gibbs 
sampler, we need to be able to generate samples from the conditional distribution of 
X ,  given the other com onents. Note that we only have to generate X I ,  . . . , X n - l ,  
since X n  = m - Ckzl X k .  For i = 1,. . . n - 1 we have n-P 

n-1 

f i ( x i ) f n ( m -  Cxi) (6.12) 
k = l  
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:- 

~ . &  

for zi E {0,1, . . . ,  m - 5 1  - . . .  - q - 1  - zi+l - . . .  - ~ ~ - 1 ) .  Sampling from 
these conditional pdfs can often be done efficiently, in particular when the { f a }  are 
members of an exponential family; see also Problem 6.1 1. 

Now that we can sample (approximately) from r ( x ) ,  it is straightforward to esti- 
mate the normalization constant C by observing that 

.., ................... ‘ .... , I .-. , 
P 

This suggests the following estimator for C ,  obtained from a random sample 
X I , .  . .  , X N  from x: 

...,.... ....... . . . . . . . I . . . .  
‘..& : I 

1 N n  

k=l t=1 
n - 1  

--,  4 

where X k ,  is the 1:-th component of &. 

6.5 ISING AND POTTS MODELS 

Figure 6.6 
sites. 

The boundary sites wrap around. The neighbors of the dark gray site are the light gray 

Let { 1, . . . .  n 2 }  be an enumeration of the sites. Each spin can be in one of two states: 
-1 or 1. Each of the 2nZ conjgurations of spins s = ( ~ 1 , .  . . .  snz) cames an amount of 
total energy 

E ( s )  = -A  c si s j  - B 2 si , 
1-3 a 

where A and B are constants; in most studies A = 1 and B = 0, which we will now assume. 
The quantities s, s3 and C,  s, are called the interaction energy and magnetization, 
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respectively. The notation c,+,j indicates that the summation is taken over neighboring 
pairs (i,j). 

In thermal equilibrium the distribution of the spins, say x, follows the Boltzmann law: 
x ( s )  0: e x p ( - E ( s ) / T ) ,  where T is a fixed temperature. In other words, we have 

e+  C,-J st  ’ J  

2 
n(s)  = 

where 2 is the normalization constant, called the partitionfunction. Apart from 2, partic- 
ular quantities of interest are the mean energyper spin E,,[Ci+,j S, Sj/n2] and the mean 
magnetization per spin E,[ci  S,/nz].  These quantities can be obtained via Monte Carlo 
simulation, provided that one can sample efficiently from the target distribution x (see 
below). 

In Figure 6.7 a sample from x is given (black = 1, white = -1) for n = 30 at the 
so-called critical temperature T = 2 /  ln(1 + a) = 2.269. 

Figure 6.7 Ising configuration at the critical temperature. 

We next define the Potts model - which can be viewed as a generalization of the k ing  
model - and explain how to generate samples from this extended model and thus, in 
particular, how to generate Figure 6.7. 

6.5.2 Potts Model 

Let { 1, . . . , J }  be an enumeration of spatial positions (sites), and let +ij be some symmet- 
rical and positive function relating the sites to each other, for example, 

,L? (> 0) if i and j are neighbors 
otherwise. *q = (6.13) 

Assign to each site i a “color” xi. Suppose there are K such colors, labeled { 1, . . . , K } .  
Define x = (51,. . . , Z J )  and let X be the space of such configurations. On X we define 
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the target pdf f(x) 0: eH(x) with 

H(x) = ’ 

‘0 

To see that the k ing  model is a special case of the Potts model, define x, = I { s , = l }  and 
as in (6.13), with 0 = 4 / T .  Then 

so that ~ ( s )  = f(x). 
Next, we show how to generate a sample from the target pdf f(x). To do so, we define 

auxiliary random variables YII ,  1 < i < j < J ,  such that conditional on X = x the 
{Yl , }  are independent, and each Yz3 is uniformly distributed on the interval [0, a,,], with 
all = exp($,3 I { x , = z , } )  2 1. In other words, the conditional pdf of Y = {Yl,}  given 
X = x i s  

The significance of this is that the joint pdf of X and Y is now simply 

In other words, (X, Y )  is uniformly distributed. More importantly, because f(x I y) 0: 
f(x,y), we find that X Iy is uniformly distributed over the set d = {x : yij  < 
exp(+ij I{x,=zj}) forall i < j}. Now, either yij E [0,1] or yij  E ( l , e @ > ~ ] .  In the 
former case, for any x E d ,  the coordinates xi and xj range over all the colors, and, by the 
uniformity, each color is equally likely. But in the latter case, xi must be equal to xj. Thus, 
for a given y, the sites i,j (with i < j) for which yij > 1 can be gathered into clusters, 
and within each such cluster the sites have identical colors. Moreover, given y, the colors 
within the clusters are independent and uniformly distributed on { 1,.  . . , K } .  The same 
holds for the colors of the remaining positions, which can be viewed as one-cluster sites. 

Hence, we can easily generate both X I y and Y I x. As a consequence, we can use the 
Gibbs sampler to (approximately) sample from f(x, y); that is, we iteratively sample from 
f(x I y) and f(y I x). Finally, to obtain a sample X from f(x), we generate (X, Y )  via 
the Gibbs sampler and simply ignore Y .  

To simplify matters further, note that instead of the exact value Y,j it suffices to know 
only the variable Bij = I { Y , ~ ~ ~ } .  Given X = x, Bij has a Ber(1 - e-Qij) distribution if 
xi = x3. and Bij = 0 otherwise. This leads to the following so-called Swendsen-Wang 
algorithm. 

Algorithm 6.5.1 (Swendsen-Wang) 

1. Given {Xi}, generate Bij - Ber(I{x,=xJ}(l - e - @ % J ) )  for 1 < i < j < .I. 
2. Given { Bij }, generate X i ,  i = 1, . . . , J by clustering all the sites and choosing each 

cluster color independently and uniformly from { 1 ,  . . . K } .  
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Remark 6.5.1 (Data Augmentation) The above idea of introducing an auxiliary variable 
y to make sampling from f (x) easier is also known as data augmentation. The composition 
method described in Section 2.3.3 can be viewed as another example of data augmentation. 
Namely, suppose we want to sample from the mixture pdf 

K 

. f (Z)  = CP, f&) ' 

z = l  

Let Y be the discrete random variable taking values in { 1,. . . , K }  corresponding to the 
probabilities { p t } .  Using the composition method, it is easy to sample from the joint pdf 
of X and Y :  first, draw Y according to { p , }  and then sample X conditional on Y = i; that 
is, sample from f,(z). By simply ignoring Y, we obtain a sample from f(z). 

6.6 BAYESIAN STATISTICS 

One of the main application areas of the MCMC method is Bayesian statistics. The mainstay 
of the Bayesian approach is Bayes' rule (1,6), which, in terms of pdfs, can be written as 

(6.14) 

In other words, for any two random variables X and Y ,  the conditional distribution of Y 
given X = x is proportional to the product of the conditional pdf of X given Y = y and 
the pdf of Y .  Note that instead of writing fx, fy, fx I y ,  and fy I in the formula above, 
we have used the same letter f for the pdf of X, Y ,  and the conditional pdfs. This particular 
style of notation is typical in Bayesian analysis and can be of great descriptive value, despite 
its apparent ambiguity. We will use this notation whenever we work in a Bayesian setting. 

The significance of (6.14) becomes clear when it is employed in the context of Bayesian 
parameter estimation, sometimes referred to as Bayesian learning. The following example 
explains the ideas. 

EXAMPLE 6.7 Coin Flipping and  Bayesian Learning 

Consider the basic random experiment in Example 1.1 on page 3, where we toss a 
biased coin R times. Suppose that the outcomes are 5 1 ,  . . . , z,, with xi = 1 if the 
i-th toss is heads and xi = 0 otherwise, i = 1, . . . , n. Let p denote the probability of 
heads. We want to obtain information about p from the data x = (51,. . . , xn). for 
example, construct a CI. 

The crucial idea is to summarize the information about p via a probability density 
f(p). For example, if we know nothing about p ,  we take f(p) uniformly distributed 
on the (0 , l )  interval, that is, f(p) = 1,0 < p 6 1. In effect, we treat p as a random 
variable. Now, obviously, the data x will affect our knowledge of p ,  and the way to 
update this information is to use Bayes' formula: 

fb I XI 0; f (x  I P) f(p) ' 
The density f(p) is called thepriordensity; f ( p  I x) is called theposteriordensity; and 
f(x I p )  is referred to as the [ikelihood. In our case, given p ,  the {Xi} are independent 
and Ber(p) distributed, so that 

n 

f ( x l p )  = n p y 1  -p)'-"s = p " ( l  - p ) " - " ,  
i=l 
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with s = q + . . . + 5 ,  representing the total number of successes. Thus, using a 
uniform prior (f(p) = 1) gives a posterior pdf 

which is the pdf of the Beta (s + 1, n - s + 1) distribution. The normalization constant 
is c = (n  + I)(:). 

A Bayesian CI for p is now formed by taking the appropriate quantiles of the 
posterior pdf. As an example, suppose that n = 100 and s = 1. Then, a left one-sided 
95% CI for p is [0,0.0461], where 0.0461 is the 0.95 quantile of the Beta(2,lOO) 
distribution. As an estimate for p ,  one often takes the value for which the pdf is 
maximal, the so-called mode of the pdf. In this case, the mode is 0.01, coinciding 
with the sample mean. Figure 6.8 gives a plot of the posterior pdf for this problem. 

Figure 6.8 Posterior pdf for p, with n = 100 and s = 1. 

Generalizing the previous example, a typical situation where MCMC (in particular 
Gibbs sampling) can be used in Bayesian statistics is the following. Suppose we want 
to sample from a posterior density f(O I x), where the data x are given (fixed) and 
0 = (e l , .  . . , O k )  is the parameter of interest. Suppose that it is easy to sample from 
f (0 ,  I 81, . . . , 0,-1, B,+l ,  . . . , B k ,  x) for all i. Then we can use the Gibbs sampler to ob- 
tain a sample 0 from f(O I x). The following example, adapted from Gelman et al. [ 5 ] ,  
illustrates the general idea. 

EXAMPLE 6.8 Poisson Disruption Problem 

Suppose the random variables X I , .  . . , X, describe the number of disasters in n 
subsequent years. In some random year K the rate of disasters changes from A 1  to 
A2. Such a K is often called a changepoint. Our prior knowledge of A, is summarized 
by a Garnrna(a,, q,), where shape parameter a, is known. In turn, 77, is given by a 
Gamrna(b,,c,) distribution, where both b, and c, are known. Let X = ( X l r A 2 )  and 
7 = (ql, rlz). We are given the data x = (zl, . . . , x,), and the objective is to simulate 
from the posterior distribution of 0 = (A,,  A2,q1, 772, K )  given x. 

For the model we have the following hierarchical structure: 

1. K has some discrete pdf f( K )  on 1,. . . , n. 

2. Given K ,  the (77%) are independent and have a Garnrna(b,, c,) distribution for2 = 1,2 .  
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3. Given K and r ] ,  the {Xi} are independent and have a Gamma(a,i ,  qi) distribution for 
i = 1,2.  

4. Given K ,  r],  and A, the {Xi} are independent and have a Poi(X1) distribution for 
i = 1, , . . , K ,  and a Poi(X2)  distribution for i = K + 1, . . . , n. 

It follows from point 4. that 

Moreover, by the product rule (1.4), the joint pdf is given by 

As a consequence, 

In other words, (XI I X2,71, K,x) rn Gamma(a1  + x,“,, zi, K + q1). In a similar 
way, we have 

so that Gibbs sampling may be used to sample from the posterior pdf .f(A, r ] ,  K I x). 

6.7 * OTHER MARKOV SAMPLERS 

There exist many variants of the Metropolis-Hastings and Gibbs samplers. However, all 
of the known MCMC algorithms can be described via the following framework. Consider 
a Markov chain { (Xn, Y n ) ,  n = 0 , 1 , 2 , .  . .} on the set X x 9, where fZ is the target 
set and 9 is an auxiliary set. Let f(x) be the target pdf. Each transition of the Markov 
chain consists of two parts. The first is (x, 9 )  -+ (x, y), according to a transition matrix 
Q; the second is (x, y) + (x’, y’), according to a transition matrix R. In other words, 
the transition matrix P of the Markov chain is given by the product Q R. Both steps are 
illustrated in Figure 6.9 and further explained below. 
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Figure 6.9 
R-step. 

Each transition of the Markov chain consists of two steps: the Q-step, followed by the 

The first step, the Q-step, changes the y-coordinate but leaves the x-coordinate intact. In 
particular, Q is of the form Q[(x ,  y ) ,  (x, y)] = Q x ( y ,  y) ,  where Qx is a transition matrix 
on q. Let qx be a stationary distribution for Q x ,  assuming that it exists. 

The second step, the R-step, is determined by (a) the stationary distribution qx and (b) 
a neighborhood structure on the set 3Y x 9. Specifically, we define for each point ( x ,  y )  
a set of neighbors 9 ( x ,  y )  such that if(x’, y’) is a neighbor of(x, y )  then the converse is 
also true; see Figure 6.9, where the shaded area indicates the neighborhood set of ( x ,  y ) .  
The crucial step is now to define the transition matrix R as 

for all R [ ( x ,  Y), (x‘, Y’)l = C(X,Y) f k ’ )  qxl(Y’) (x’, Y’) E g ( X 9  Y) 1 

wherec(x, Y) = C(xt,yOEg(x,y) f(x’) qX’(y’). Notethatc(x, Y) = c(x’, Y’) when (x ,  Y)  
and (x’, y’) belong to the same neighborhood set. With this choice of Q and R it can be 
shown (see Problem 6.15) that the Markov chain has a stationary distribution 

P(X> Y) = f ( x )  qx(Y) 1 (6.15) 

which is also the limiting distribution, provided that the chain is irreducible and aperiodic. 
In particular, by ignoring the y-coordinate, we see that the limiting pdf of X, is the required 
target f (x) .  This leads to the following generalized Markov sampler [ 1 I]. 

Algorithm 6.7.1 (Generalized Markov Sampler) Starting with an arbitrary ( X O ,  YO) ,  
perform the following steps iteratively: 

[&-step:] Given (X,, Y,) ,  generate Y from Qx(Y,, y ) .  

[R-step:] Given Y generate (Xn+lr Y,+1) from R [ ( X , , Y ) ,  (x ,  y)]. 

Remark 6.7.1 Denoting 9 - ( x ,  y )  = 9 ( x ,  y )  \ { ( x ,  y)}. the sampler can be generalized 
further (see [ 111) by redefining R as 

(6.16) 
where s is an arbitrary function such that,first, s (x ,  y) = s(x’, y’) forall (x’, y’) E 9 ( x ,  y)  
and, second, the quantities above are indeed probabilities. 
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The generalized Markov sampler framework makes it possible to obtain many different 
samplers in a simple and unified manner. We give two examples: the slice sampler and the 
reversible jump sampler. 

6.7.1 Slice Sampler 

Suppose we wish to generate samples from the pdf 

m 

f(x) = b fl fk(x) 1 

k=l 

(6.17) 

where b is a known or unknown constant and the { fk} are known positive functions - not 
necessarily densities. We employ Algorithm 6.7.1, where at the Q-step we generate, for 
a given X = x, a vector Y = (Y1, . . . , Ym) by independently drawing each component 
yk from the uniform distribution on [o, fk(X)]. Thus, q,(y) = 1/ n,"==, fk(x) = b/f(x). 
Second, we let 9 ( x l y )  = {(x',y) : f k ( X ' )  2 Yk, k = 1,. . . ,m}.  Then, (note that 
fb') qx'(Y) = b) 

In other words, in the R-step, given x and y, we draw X' uniformly from the set {x' : 
.fk(x') 2 yk, k = 1, . . . , m,}. This gives the following sfice sampler. 

Algorithm 6.7.2 (Slice Sampler) 

Let f(x) be of the form (6.17). 

I .  Initialize XI. Set t = 1. 

2. Fork = 1 , .  . . ,m draw u k  - u(o,1) andfet Yk = uk fk(&). 

3. Draw Xt+l uniformly from theset {x : fk(X) > Yk, k = 1,.  . . , m}. 

4.  Stop ifa stopping criterion is met; otherwise, set t = t + 1 and repeat from Step 2.  

EXAMPLE 6.9 Slice Sampler 

Suppose we want to generate a sample from the target pdf 

x e-" 
f(x) = c - 2 2 0  

1 +x' 

using the slice sampler with fl(x) = x/(1 + x) and fz(x) = e-z. 
Suppose that at iteration t, X t -  1 = z ,  and u1 and u2 are generated in Step 2.  In Step 

3, X t  is drawn uniformly from the set {x : fl(x)/fl(z) 2 u1, f2(x)/fz(z) 2 uz} ,  
which implies the bounds x 2 l+:tEl and x < z - lnu2.  Since for z > 0 and 
0 < ul, u2 < 1, the latter bound is larger than the former, the interval to be drawn 
from in Step 3 is ( l+,"'t, 2 ,  z - In 212). Figure 6.10 depicts a histogram of N = lo5 
samples generated via the slice sampler, along with the true pdf f(x). We see that 
the two are in close agreement. 
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Figure 6.10 True density and histogram of samples produced by the slice sampler. 

6.7.2 Reversible Jump Sampler 

Reversiblejumpsamplers [8] are useful for sampling from target spaces that contain vectors 
of different dimensions. This often occurs in Bayesian inference when different models for 
the data are considered. 

EXAMPLE 6.10 Regression Data 

Suppose some data y1, . . . , yn, are the outcomes of independent random variables 
{ Yi} of the form 

(6.18) 
j = O  

where 211, . . . , u, are known variables, and M E (0, .  . . , Mma} and the parameters 
{P,} are unknown. Let y = ( y l , .  . . , yn) and p = (PO, .  . . , O M ) .  Taking uniform 
(i.e., constant) priors for {p,} and A t ,  we have the joint pdf 

(6.19) 

Denoting x = (m, p), the objective is to draw from the posterior pdf f (x  I y) = 
f (m,  0 I y). This yields information not only about the parameters, but also about 
which model (expressed by M )  is more appropriate. However, note that the dimen- 
sionality of x depends crucially on rn, so that standard Gibbs or Metropolis-Hastings 
sampling is not appropriate. 

The reversible jump samplerjumps between spaces of different dimensionality according 
to a set of allowed jumps (also called moves). In the above example one could, for instance, 
allow only jumps between vectors that differ in dimension by at most 1; that is, PO -+ P;, 

To formulate the reversible jump sampler in the generalized Markov sampler framework, 
= X x A, where A is the set of moves; write a generic element as (z, m). In 

PO -+ (L%,P;), (Po ,P l )  ---f P&andsoon.  

define 
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the Q-step we take Qx(., (z, m)) = px(m)  qm(x, z). That is, a move of type m is selected 
according to some discrete pdf px(m). For example, the dimension of x is decreased, 
increased, or left unchanged. Then a new z is selected according to some transition function 
qnb(x, z). Note that the stationary pdf for the Q-step at (z, m) is px(m) qm(x, z). The R- 
step is determined by defining 9 ( x ,  (z, m))  = { (x, (z,  m)) ,  (z, (x, m‘))}, where m‘ is the 
reverse move of m, that is, from z to x. Then (6.16) reduces to 

(6.20) 

with e = ’(’) p z ( m ’ )  q m f ( z ’ x ) .  Taking s(x, (z, m))  = min { 1 + e, 1 + l /e},  the right-hand 
side of (6.20) reduces further to min{e, 1). The transition (x, (z, m))  + (z, (x, m’)) may 
thus be interpreted as acceptance of the proposed element z. In effect, Q is used to propose 
a new element in accordance with the move m and transition function q, and R is used 
to accept or reject it in accordance with the above acceptance ratio. The reversible jump 
sampler may thus be viewed as a generalization of the Metropolis-Hastings sampler. This 
gives the following algorithm (to be iterated). 

f (x)  px(m)  q r n ( X I Z )  

Algorithm 6.7.3 (Reversible Jump Sampler) 
Given the current state Xt: 

I .  Generate m - px, (m) .  

2. Generate Z - qm(Xt, z). Let m’ be the reverse move, that is, from Z to Xt. 

3. Generate U - U(0 , l )  anddeliver 

where 

z ,  i f U l a  
Xt, otherwise , Xt+l = (6.21) 

(6.22) 

Remark 6.7.2 (Dimension Matching) When dealing with continuous random variables 
i t  is important to ensure that the transition densities are properly defined. Suppose that 
dim(x) = d and dim(z) = d’ > d. A possible way to generate a transition x -+ z is to 
first draw a (d’ - d)-dimensional random vector U according to some density g(u) and 
then let z = 4(x, U) for some bijection 4. This is known as dimension matching - the 
dimension of (x, u) must match that of z. Note that by (1.20) the transition density is given 
by q(x,z) = g(u)/l.J(x,u)(qfJ)l, where lJ(x,u)(q5)l is the absolute value of the determinant 
of the matrix of Jacobi of 4 at (x, u). 

W EXAMPLE 6.11 Example 6.10 (Continued) 

We illustrate the reversible jump sampler using regression data y = (91,. . . , gn) of 
the form (6.18), with ui = ( i  - 1)/20, i = 1,. . . , 101, PO = 1, 01 = 0.3, and 
pz = -0.2. The data are depicted in Figure 6.1 1. Although it is obvious that a 
constant model (m = 0) does not fit  the data, it is not clear if a linear model (m = 1) 
or a quadratic model (m = 2) is more appropriate. To assess the different models, we 
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3 

can run a reversible jump sampler to produce samples from the posterior pdf f(x I y), 
which (up to a normalization constant) is given by the right-hand side of (6.19). A 
very basic implementation is the following: 

- m = 2  
-. 

2 1 ’  . . . .  -.:.. 

Procedure 

I .  Initialize XI = x = (m’, p’). Set t = 1. 

-3 

2.  Choose m E {0,1,2}  with equal probability. 

3. Generate 0 from an (m + 1)-dimensional normal pdf .9* with independent compo- 
nents, with means 0 and variances u2. Let a = (m,P).  

. .  
- 

4. Generate U - U(0,l). If 

set X t + l  = z; otherwise, set X t + l  = x. 

5 .  If t = N stop; otherwise, set t = t + 1, x = (m’, p’) = X t ,  and repeat from Step 2. 

Figure 6.11 Regression data and fitted curves. 

The above procedure, with N = lo5 and u = 2, produced 22,136 two-dimensional 
vectors p and 77,834 three-dimensional ones, giving posterior probabilities 0.221 
and 0.778 for models 1 and 2, respectively. The posterior probability for the constant 
model was negligible (0.0003). This indicates that the quadratic model has the best 
fit. The regression parameters p are estimated via the sample means of the {p,}  for 
mt = 1 or 2 and are found to be (1.874, -0.691) and (1.404, -0.011, -0.143). The 
corresponding regression curves are depicted in Figure 6.1 1. 
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6.8 SIMULATED ANNEALING 

Simulated annealing is a popular optimization technique based on MCMC. This technique 
uses MCMC sampling to find a mode of a density f(x) (a point x* where f(x) is max- 
imal). It involves defining a family of densities of the form f ~ ( x )  c( [ f ( ~ ) ] ’ / ~ ,  where 
the parameter T is called the temperature of the distribution. MCMC sampling is used to 
draw a single element X(k) from f ~ ,  for successively lower temperatures TI T2, . . .. Each 
element X ( k )  is used as the initial element of the next chain. As the temperature is reduced, 
the distributions become sharply peaked at the global maxima of f. Thus, the {X(k)} 
converge to a point. They can converge to a local maximum, but this possibility is reduced 
by careful selection of successive temperatures. The sequence of temperatures, or anneal- 
ing schedule, is therefore critical to the success of the method. A common choice for the 
annealing schedule is a geometric progression, starting with a specified initial temperature 
and multiplying by a coolingfactor in the interval (0, 1) after each iteration. 

Simulated annealing can also be applied to nonprobabilistic optimization problems. 
Given an objective function S(x), one defines a Boltzmann distribution via the density 
f(x) 0: e-s(x) or f(x) 0: es(x), depending on whether the objective is to minimize or 
maximize S. Global optima of S are then obtained by searching for the mode of the 
Boltzmann distribution. We illustrate the method via two worked examples, one based on 
the Metropolis-Hastings sampler and the other on the Gibbs sampler. 

EXAMPLE 6.12 Traveling Salesman Problem 

The traveling salesman problem (TSP) can be formulated as follows. Consider a 
weighted graph G with n nodes, labeled 1 ,2 ,  , . . , n. The nodes represent cities, and 
the edges represent the roads between the cities. Each edge from i to j has weight 
or cost cij, representing the length of the road. The problem is to find the shortest 
tour that visits all the cities exactly once except the starting city, which is also the 
terminating city. An example is given in Figure 6.12, where the bold lines form a 
possible tour. 

Figure 6.12 Find the shortest tour x visiting all nodes. 

Without loss of generality, we may assume that the graph is complete (fully con- 
nected), because if it is not complete, we can always add some costs (distances) equal 
to +m. Let X be the set of all possible tours, and let S(x) the total length of tour 
x E X. We can represent each tour via a permutation of (1, . . . , n). For example, 
for n = 4, the permutation (1 ,3 ,2 ,4)  represents the tour 1 -+ 3 -+ 2 -+ 4 -+ 1. 
From now on, we identify a tour with its corresponding permutation. The objective 
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is thus to minimize 

(6.23) 

Note that the number of elements in X is typically very large, because I XI = n!. 
The TSP can be solved via simulated annealing in the following way. First, 

we define the target pdf to be the Boltzmann pdf f ( x )  = ce-s(x)/T. Second, 
we define a neighborhood structure on the space of permutations X called 2- 
opt. Here the neighbors of an arbitrary permutation x are found by (1) select- 
ing two different indices from { 1, . . . , n}  and (2) reversing the path of x between 
those two indices. For example, if x = (1 ,2 , .  . . , l o )  and indices 4 and 7 are 
selected, then y = ( 1 , 2 , 3 , 7 , 6 , 5 , 4 , 8 , 9 , 1 0 ) ;  see Figure 6.13. Another exam- 
ple is: if x = (6 ,7 ,2 ,8 ,3 ,9 ,10 ,5 ,4 ,  1) and indices 6 and 10 are selected, then 
y = ( 6 , 7 , 2 , 8 , 3 , 1 , 4 , 5 , 1 0 , 9 ) .  

1 2 3 4 5 1 2 3 4 5 

10 9 8 7 6 i x  10 9 8 7 6 

Figure 6.13 Illustration of the 2-opt neighborhood structure. 

Third, we apply the Metropolis-Hastings algorithm to sample from the target. We 
need to supply a transition function 9(x, y) from x to one of its neighbors. Typically, 
the two indices for the 2-opt neighborhood are selected uniformly. This can be done, 
for example, by drawing a uniform permutation of (1, . . . , n)  (see Section 2.8) and 
then selecting the first two elements of this permutation. The transition function is 
here constant: q(x, y )  = 9(y, x) = 1/ (i) . It follows that in this case the acceptance 
probability is 

By gradually decreasing the temperature T ,  the Boltzmann distribution becomes more 
and more concentrated around the global minimizer. This leads to the following 
generic simulated annealing algorithm with Metropolis-Hastings sampling. 
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Algorithm 6.8.1 (Simulated Annealing: Metropolis-Hastings Sampling) 

1. Initialize the starting state XO and temperature TO. Set t = 0. 

2. Generate a new state Y from the symmetric proposal q(X1, y). 

3. I f S ( Y )  < S(Xt) let Xt+l = Y. I f S ( Y )  2 S(Xt), generate U - U(0,l) and let 
Xt+l = Y if 

otherwise, let Xt+l = Xt. 

(y < e-(s(Y)-s(xc))/~c . 

4. Select a new temperature Tt+l < Tt, increase t by I ,  and repeat from Step 2 until 
stopping. 

A common choice in Step 4 is to take Tt+l = flTt for some f l  < 1 close to 1, such 
as ,D = 0.99. 

EXAMPLE 6.13 n-Queens Problem 

In the n-queens problem the objective is to arrange n queens on a n x n chess board 
in such a way that no queen can capture another queen. An illustration is given in 
Figure 6.14 for the case n = 8. Note that the configuration in Figure 6.14 does not 
solve the problem. We take n = 8 from now on. Note that each row of the chess 
board must contain exactly one queen. Denote the position of the queen in the i-th 
row by xi; then each configuration can be represented by a vector x = (21, . . . ,Q).  
For example, x = (2 ,3 ,7,4,8,5,1,6)  corresponds to the large configuration in 
Figure 6.14. Two other examples are given in the same figure. We can now formulate 
the problem of minimizing the function S(x) representing the number of times the 
queens can capture each other. Thus S(x) is the sum of the number of queens 
that can hit each other minus 1; see Figure 6.14, where S(x) = 2 for the large 
configuration. Note that the minimal S value is 0. One of the optimal solutions is 
~ ' = ( 5 , 1 , 8 , 6 , 3 , 7 , 2 , 4 ) .  

x = (2,5,4,8,3,7,3,5) 

S(X) = 6 

x =  (1,8,3,1,5,8,4,2) 

S(x) = 7 

Figure 6.14 Position the eight queens such that no queen can capture another. 
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We show next how this optimization problem can be solved via simulated annealing 
using the Gibbs sampler. As in the previous TSP example, each iteration of the 
algorithm consists of sampling from the Boltzmann pdf f(x) = e-S(x)/T via the 
Gibbs sampler, followed by decreasing the temperature. This leads to the following 
generic simulated annealing algorithm using Gibbs sampling. 

Algorithm 6.8.2 (Simulated Annealing: Gibbs Sampling) 

1. Initialize the starting state XO and temperature TO. Set t = 0. 

2. For a given X t ,  generate Y = (Y1, . . . , Y,) as follows: 

i. Draw Y1 from the conditionalpdff(x1 I Xt,2, .  . . Xt ,n) .  

ii. Draw Yi from j ( x i  I Y1,. . . , x-1, X t , i + l , .  . . , X t , n ) ,  

iii. Draw Y,from j ( z ,  1 Y1,. . . , Yn-l). 

i = 2 , .  . . ,TI  - 1. 

3. Let Xt+l  = Y. 

4. r f S ( X t )  = 0 stop and display the solution; otherwise, select a new temperature 
Tt+l < Tt, increase t by I ,  and repeat from Step 2. 

Note that in Step 2 each Y,  is drawn from a discrete distribution on { 1, . . . , n}  with 
probabilities proportional to e-s(zl)/Tt, . . . , e-s(zv,)/Tt, where each Zk is equal to 
the vector (Y1,.  . . , Yi-1, k, X t , i + l l .  . . ,X t , , ) .  

Other MCMC samplers can be used in simulated annealing. For example, in the hide- 
and-seek algorithm [20] the general hit-and-run sampler (Section 6.3) is used. Research 
motivated by the use of hit-and-run and discrete hit-and-run in simulated annealing, has 
resulted in the development of a theoretically derived cooling schedule that uses the recorded 
values obtained during the course of the algorithm to adaptively update the temperature 
[22, 231. 

6.9 PERFECT SAMPLING 

Returning to the beginning of this chapter, suppose that we wish to generate a random 
variable X taking values in { 1, . . . , m} according to a target distribution x = { x i } .  As 
mentioned, one of the main drawbacks of the MCMC method is that each sample X t  is only 
asymptotically distributed according to x, that is, limt+m P ( X t  = i) = xi.  In contrast, 
perfect sampling is an MCMC technique that produces exact samples from K. 

Let { X , }  be a Markov chain with state space { 1 , .  . . , m}, transition matrix P,  and 
stationary distribution K. We wish to generate the { X t ,  t = 0 ,  -1, - 2 > .  . .} in such a 
way that X o  has the desired distribution. We can draw X O  from the rn-point distribution 
corresponding to the X-l-th row of P,  see Algorithm 2.7.1. This can be done via the IT 
method, which requires the generation of a random variable UO - U(0, 1). Similarly, X-1 
can be generated from X-2 and U-1 - U(0,l). In general, we see that for any negative 
time -t the random variable X o  depends on X W t  and the independent random variables 

Next, consider m dependent copies of the Markov chain, starting from each of the states 
1, . . . , m and using the same random numbers { Uz} - similar to the CRV method. Then, if 
two paths coincide, or coalesce, at some time, from that time on, both paths will be identical. 

Cl_t+l,. . . , vo N U(0,l). 
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The paths are said to be coupled. The main point of the perfect sampling method is that if 
the chain is ergodic (in particular, if it is aperiodic and irreducible), then withprobabiliv I 
there exists a negative time -T such that all m paths will have coalesced before or at time 
0. The situation is illustrated in Figure 6.15. 

6 

' 

2 '  

1 '  

L t  

-T --T 0 

Figure 6.15 All Markov chains have coalesced at time -7. 

Let U represent the vector of all Ut, t 6 0. For each U we know there exists, with 
probability 1, a - T ( U )  < 0 such that by time 0 all m coupled chains defined by U have 
coalesced. Moreover, if we start at time -T a stationaly version of the Markov chain, using 
again the same U, this stationary chain must, at time t = 0, have coalesced with the other 
ones. Thus, any of the m chains has at time 0 the same distribution as the stationary chain, 
which is T.  

Note that in order to construct T we do not need to know the whole (infinite vector) 
U .  Instead, we can work backward from t = 0 by generating U-1 first, and checking if 
-T = -1. If this is not the case, generate U-2 and check if -T = -2, and so on. This 
leads to the following algorithm, due to Propp and Wilson [ 181, called coupling from the 
past. 

Algorithm 6.9.1 (Coupling from the Past) 

I .  Generate UO - U(0,l). Set UO = Uo. Set t = -1. 

2. Generate m Markov chains, starting at t from each of the states 1, . . . , m, using the 
same random vector Ut+l. 

3. Check if all chains have coalesced before or at time 0. If so, return the common 
value of the chains at time 0 andstop; otherwise, generate Ut - U(0, l), let Ut = 
( U t ,  UL+l) ,  set t = t - 1, and repeat from Step 2. 

Although perfect sampling seems indeed perfect in that it returns an exact sample from 
the target x rather than an approximate one, practical applications of the technique are, 
presently, quite limited. Not only is the technique difficult or impossible to use for most 
continuous simulation systems, it is also much more computationally intensive than simple 
MCMC. 
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PROBLEMS 

6.1 Verify that the local balance equation (6.3) holds for the Metropolis-Hastings algo- 
rithm. 

6.2 When running an MCMC algorithm, it is important to know when the transient (or 
burn-in) period has finished; otherwise, steady-state statistical analyses such as those in 
Section 4.3.2 may not be applicable. In practice this is often done via a visual inspection 
of the sample path. As an example, run the random walk sampler with normal target 
distribution N(10, l )  and proposal Y - N(z,0.01). Take a sample size of N = 5000. 
Determine roughly when the process reaches stationarity. 

6.3 A useful tool for examining the behavior of a stationary process { X , }  obtained, for 
example, from an MCMC simulation, is the covariance function R(t) = Cov(Xt, X O ) ;  see 
Example 6.4. Estimate the covariance function for the process in Problem 6.2 and plot the 
results. In Matlab’s signal processing toolbox this is implemented under the M-function 
xc0v.m. Try different proposal distributions of the form N(z, g2) and observe how the 
covariance function changes. 

6.4 Implement the independence sampler with an Exp( 1) target and an Exp( A) proposal 
distribution for several values of A. Similar to the importance sampling situation, things go 
awry when the sampling distribution gets too far from the target distribution, in this case 
when X > 2. For each run, use a sample size of lo5  and start with z = 1. 

a) For each value X = 0.2,1,2,  and 5 ,  plot a histogram of the data and compare it 
with the true pdf. 

b) Foreach value of the above values of A, calculate the sample mean and repeat this 
for20 independent runs. Make a dotplot of the data (plot them on a line) and notice 
the differences. Observe that for X = 5 most of the sample means are below 1, 
and thus underestimate the true expectation 1, but a few are significantly greater. 
Observe also the behavior of the corresponding auto-covariance functions, both 
between the different As and, for X = 5 ,  within the 20 runs. 

6.5 Implement the random walk sampler with an Exp( 1) target distribution, where Z (in 
the proposal Y = z + 2) has a double exponential distribution with parameter A. Carry 
out a study similar to that in Problem 6.4 for different values of A, say X = 0.1, 1,5: 20. 
Observe that (in this case) the random walk sampler has a more stable behavior than the 
independence sampler. 

6.6 Let X = ( X ,  Y ) T  be a random column vector with a bivariate normal distribution 
with expectation vector 0 = (0, O)T and covariance matrix 

a) Show that (Y I X = x) - N(ex,  1 - e2) and ( X I  Y = y) - N(ey, 1 - e2). 
b) Write a systematic Gibbs sampler to draw lo4 samples from the bivariate distri- 

6.7 A remarkable feature of the Gibbs sampler is that the conditional distributions in 
Algorithm 6.4.1 contain sufficient information to generate a sample from the joint one. 
The following result (by Hammersley and Clifford [9]) shows that it is possible to directly 

bution N(O,2’) and plot the data for e = 0,0.7 and 0.9. 
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express the joint pdf in terms of the conditional ones. Namely, 

Prove this. Generalize this to the n-dimensional case, 

6.8 In the Ising model the expected magnetizationper spin is given by 

where KT is the Boltzmann distribution at temperature T .  Estimate M ( T ) ,  for example via 
the Swendsen-Wang algorithm, for various values of T E [0,5], and observe that the graph 
of M ( T )  changes sharply around the critical temperature T z 2.61. Take n = 20 and use 
periodic boundaries. 

6.9 Run Peter Young's Java applet in 
http://bartok.ucsc.edu/peter/java/ising/keep/ising.html 

to gain a better understanding of how the k ing  model works. 

6.10 AsinExample6 .6 , le tZ* = {x : ~ ~ = " = , ,  = m, z, E (0 , .  . . ,m} ,  i = I , .  . . ,n}. 
Show that this set has (m:!F1) elements. 

6.1 1 In a simple model for a closed queueing network with n queues and m customers, 
it is assumed that the service times are independent and exponentially distributed, say with 
rate / I ,% for queue i, i = 1, . . . , n. After completing service at queue i, the customer moves 
to queue j with probability pZ3. The {pv} are the so-called routingprobabilities. 

Figure 6.16 A closed queueing network. 

It can be shown (see, for example, [ 121) that the stationary distribution of the number of 
customers in the queues is of product form (6. lo), with fi being the pdf of the G( 1 - y i / p i )  
distribution; thus, j i ( z i )  0: (yi/pi)=i. Here the {yi} are constants that are obtained from 
the following set offrow balance equations: 

(6.25) 

which has a one-dimensional solution space. Without loss of generality, y1 can be set to 1 
to obtain a unique solution. 
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Consider now the specific case of the network depicted in Figure 6.16, with n = 3 queues. 
Suppose the service rates are p1 = 2, p2 = 1, and p3 = 1. The routing probabilities are 
given in the figure. 

a) Show that a solution to (6.25) is (y1, y2, y3) = (1,10/21,4/7). 
b) For m = 50 determine the exact normalization constant C. 
c) Implement the procedure of Example 6.6 to estimate C via MCMC and compare 

Let X I , .  . . , X ,  be a random sample from the N ( p ,  02)  distribution. Consider the 

the estimate f o r m  = 50 with the exact value. 

6.12 
following Bayesian model: 

0 f (p ,u2)  = l / 2 ;  

0 (xt I p,  g) - N(p,  a2), i = 1, .  . . n independently. 

Note that the prior for (p,  02 )  is improper. That is, it is not a pdf in itself, but by obstinately 
applying Bayes' formula, it does yield a proper posterior pdf. In some sense it conveys the 
least amount of information about p and 02.  Let x = ( 5 1 ,  . . . , 2,) represent the data. The 
posterior pdf is given by 

We wish to sample from this distribution via the Gibbs sampler. 
a) Show that ( p  I u2,  x) N N(Zl n 2 / n ) ,  where 3 is the sample mean. 
b) Prove that 

(6.26) 

where V ,  = Cr(xi - ~ ) ~ / n  is the classical sample variance for known p. In 
other words, (1 /02  I p,  x) - Garnrna(n,/2, n.V,/2). 

c) Implement a Gibbs sampler to sample from the posterior distribution, taking 
'n = 100. Run the sampler for lo5 iterations. Plot the histograms of j ( p  1 x) and 
f(02 I x) and find the sample means of these posteriors. Compare them with the 
classical estimates. 

d) Show that the true posterior pdf of p given the data is given by 

f b  I x) 0: ( ( P  - + v) - n / 2  1 

where V = c,(zi  - Z)2 /n .  (Hint: in order to evaluate the integral 

f ( P  I x) = Lrn I i P ,  2 I x) do2 

write it first as ( 2 ~ ) - 4 ~  Jr tnI2-' exp( - t c) dt, where c = n V,, by applying 
the change of variable t = l/a2. Show that the latter integral is proportional to 
c - " / ~ .  Finally, apply the decomposition V ,  = (3 - p)2  + V . )  

6.13 Suppose f(O I x) is the posterior pdf for some Bayesian estimation problem. For 
example, 0 could represent the parameters of a regression model based on the data x. An 
important use for the posterior pdf is to make predictions about the distribution of other 
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random variables. For example, suppose the pdf of some random variable Y depends on 0 
via the conditional pdf f (y  10). Thepredictivepdfof Y given x is defined as 

which can be viewed as the expectation of f (y  I 0) under the posterior pdf. Therefore, we 
can use Monte Carlo simulation to approximate f ( y  I x) as 

where the sample {Otl i = 1 , .  . . , N }  is obtained from f ( O  I x); for example, via MCMC. 
As a concrete application, suppose that the independent measurement data: 

-0.4326, -1.6656,0.1253,0.2877, -1.1465 come from some N(p, 02) distribution. De- 
fine 0 = ( p ,  g2). Let Y - N(p, c2) be a new measurement. Estimate and draw the 
predictive pdf f ( y  I x) from a sample 01,. . . , 0 N  obtained via the Gibbs sampler of Prob- 
lem 6.12. Take N = 10,000. Compare this with the “common-sense” Gaussian pdf with 
expectation Z (sample mean) and variance s2 (sample variance). 

6.14 In the zero-inflated Poisson (ZIP) model, random data X I ,  . . . , X, are assumed to 
be of the form X ,  = R, K ,  where the { y Z }  have a Poi(A) distribution and the { Ri} have 
a Ber(p) distribution, all independent of each other. Given an outcome x = (z1, . . . , zn), 
the objective is to estimate both A and p .  Consider the following hierarchical Bayes model: 

0 p - U(0, l )  
0 (A I p )  - Garnrna(a, b)  

0 (T ,  I p ,  A) - Ber(p) independently 
0 (xi I r,  A, p )  - Poi(A T, )  independently (from the model above), 

where r = ( T I ,  . . . , T,) and a and b are known parameters. It follows that 

(prior for p ) ,  
(prior for A), 

(from the model above), 

We wish to sample from the posterior pdf f ( X ,  p ,  r I x) using the Gibbs sampler. 
Show that 

1. (Alp,r ,x) - G a r n m a ( o + C , z , ,  b+C,r , ) .  
2. ( p  I A,  r, x) - Beta(1 + c, r,, n + 1 - c, T,). 

3. (Ta I A , P ? X )  - Ber ( p c - * + Y p ; I { , , = a ) ) .  
Generate a random sample of size n = 100 for the ZIP model using parameters 
p = 0.3 and X = 2. 
Implement the Gibbs sampler, generate a large (dependent) sample from the pos- 
terior distribution and use this to construct 95% Bayesian CIS for p and X using 
the data in b). Compare these with the true values. 

6.15 * Show that p in (6.15) satisfies the local balance equations 

p(x, y) R[(x, Y), (XI, Y’)] = ~(x’, Y’) R[(x‘, (X7 Y)] 
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Thus p i s  stationary with respect to R, that is, p ,R = p. Show that 
respect to Q. Show, finally, that p is stationary with respect to P = QR. 

6.16 * This is to show that the systematic Gibbs sampler is a special case of the generalized 
Markov sampler. Take 9 to be the set of indices { 1, . . . , n}, and define for the Q-step 

is also stationary with 

1 i f y ’ = y + I o r y ’ =  1 , y = n  
QX(y,y’) = { 0 otherwise. 

Let the set of possible transitions 9 ( x ,  y) be the set of vectors {(XI, y)} such that all 
coordinates of x’ are the same as those of x except for possibly the y-th coordinate. 

a) Show that the stationary distribution of Q x  is q x ( y )  = l/n, for y = 1 , .  . . , n. 
b) Show that 

(z,Y)-Yx,Y) 

c) Compare with Algorithm 6.4.1. 

6.17 * Prove that the Metropolis-Hastings algorithm is a special case of the general- 
ized Markov sampler. (Hint: let the auxiliary set 9 be a copy of the target set x, let 
Qx correspond to the transition function of the Metropolis-Hastings algorithm (that is, 
Qx(., y )  = q(x ,  y)), and define 9 ( x ,  y )  = { (x, y ) ,  (y, x)}. Use arguments similar to 
those for the Markov jump sampler (see (6.20)) to complete the proof.) 

6.18 Barker’s and Hastings’ MCMC algorithms differ from the symmetric Metropolis 
sampleronly in thatthey define theacceptance ratioa(x, y )  toberespectively f ( y ) / ( f ( x ) +  
f ( y ) )  and s(x, y ) / ( l  + l / ~ ( x ,  y))  instead of min{f(y) / f (x) ,  1). Here ~ ( x ,  y )  is defined 
in (6.6) and s is any symmetric function such that 0 < a(x, y )  < 1. Show that both are 
special cases of the generalized Markov sampler. (Hint: take 9 = X.) 

6.19 
in Example 6.13. How many solutions can you find? 

6.20 
TSP in Example 6.12. Run the algorithm on some test problems in 

Implement the simulated annealing algorithm for the n-queens problem suggested 

Implement the Metropolis-Hastings based simulated annealing algorithm for the 

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ 

6.21 
mize the function 

Write a simulated annealing algorithm based on the random walk sampler to maxi- 

sin’(10z) + cos5(5z + 1) 
S ( X )  = 

s * - z + 1  

Use a N(z, u2)  proposal function, given the current state 2. Start with z = 0. Plot the 
current best function value against the number of evaluations of S for various values of 
CT and various annealing schedules. Repeat the experiments several times to assess what 
works best. 

Further Reading 

MCMC is one of the principal tools of statistical computing and Bayesian analysis. A com- 
prehensive discussion of MCMC techniques can be found in [ 191, and practical applications 
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are discussed in [7]. For more details on the use of MCMC in Bayesian analysis, we refer 
to [5]. A classical reference on simulated annealing is [I]. More general global search 
algorithms may be  found in [25]. An influential paper on stationarity detection in Markov 
chains, which is closely related to perfect sampling, is [3]. 
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CHAPTER 7 

SENSITIVITY ANALYSIS AND MONTE 
CARL0 OPTIMIZATION 

7.1 INTRODUCTION 

As discussed in Chapter 3, many real-world complex systems in science and engineer- 
ing can be modeled as discrete-event systems. The behavior of such systems is identi- 
fied via a sequence of discrete events, which causes the system to change from one state 
to another. Examples include traffic systems, flexible manufacturing systems, computer- 
communications systems, inventory systems, production lines, coherent lifetime systems, 
PERT networks, and flow networks. A discrete-event system can be classified as either 
static or dynamic. The former are called discrete-event static systems (DESS), while the 
latter are called discrete-event dynamic systems (DEDS). The main difference is that DESS 
do not evolve over time, while DEDS do. The PERT network is a typical example of a 
DESS, with the sample performance being, for example, the shortest path in the network. A 
queueing network, such as the Jackson network in Section 3.3.1, is an example of a DEDS, 
with the sample performance being, for example, the delay (waiting time of a customer) in 
the network. In this chapter we shall deal mainly with DESS. For a comprehensive study 
of both DESS and DEDS the reader is referred to [ 1 I], [ 161, and [201. 

Because of their complexity, the performance evaluation of discrete-event systems is usu- 
ally studied by simulation, and it is often associated with the estimation of the performance 
or response function !(u) = E,[H(X)], where the distribution of the sample performance 
H(X) depends on the control or reference parameter u E W .  Sensitivity analysis is con- 
cerned with evaluating sensitivities (gradients, Hessians, etc.) of the response function !( u) 
with respect to parameter vector u, and it is based on the score function and the Fisher infor- 

Simulation and the Monte Carlo Method, Second Edition. By R.Y. Rubinstein and D. P. Kroese 201 
Copyright @ 2007 John Wiley & Sons, Inc. 
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mation. It provides guidance for design and operational decisions and plays an important 
role in selecting system parameters that optimize certain performance measures. 

To illustrate, consider the following examples: 

1. Stochastic networks. One might wish to employ sensitivity analysis in order to 
minimize the mean shortest path in the network with respect, say, to network link 
parameters, subject to certain constraints. PERT networks and flow networks are 
common examples. In the former, input and output variables may represent activ- 
ity durations and minimum project duration, respectively. In the latter, they may 
represent flow capacities and maximal flow capacities. 

2. Traffic light systems. Here the performance measure might be a vehicle's average 
delay as it proceeds from a given origin to a given destination or the average number of 
vehicles waiting for a green light at a given intersection. The sensitivity and decision 
parameters might be the average rate at which vehicles arrive at intersections and the 
rate of light changes from green to red. Some performance issues of interest are: 

What will the vehicle's average delay be if the interamval rate at a given intersec- 
tion increases (decreases), say, by 10-50%? What would be the corresponding 
impact of adding one or more traffic lights to the system? 

Which parameters are most significant in causing bottlenecks (high congestion 
in the system), and how can these bottlenecks be prevented or removed most 
effectively? 

How can the average delay in the system be minimized, subject to certain 
constraints? 

We shall distinguish between the so-called distributional sensitivity parameters and the 
structural ones. In the former case we are interested in sensitivities of the expected perfor- 
mance 

[(U) = E"[H(X)] = 1 H(x)f(x; u) dx (7.1) 

with respect to the parameter vector u of the pdf f (x;  u), while in the latter case we are 
interested in sensitivities of the expected performance 

(7.2) 

with respect to the parameter vector u in the sample performance H ( x ;  u). As an example, 
consider a GI/G/ l  queue. In the first case u might be the vector of the interarrival and 
service rates, while in the second case u might be the buffer size. Note that often the 
parameter vector u includes both the distributional and structural parameters. In such a 
case, we shall use the following notation: 

where u = ( ~ 1 ,  u2). Note that [(u) in (7.1) and (7.2) can be considered particular cases 
of ((u) in (7.3), where the corresponding sizes of the vectors u1 and u2 equal 0. 
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EXAMPLE7.1 

Let H ( X ;  u g , u 4 )  = max(X1 + us, X2 + uq}, where X = (XI ,  X2) is a two- 
dimensional vector with independent components and X i  - fi(X; ui), i = 1 , 2 .  In 
this case u1 and u2 are distributional parameters, while u3 and u4 are structural ones. 

Consider the following minimization problem using representation (7.3) : 

minimize &(u) = E,,[Ho(X; Q)],  u E w ,  
(PO) subject to : !,(u) = E,,[Hj(X; UZ)] < 0, j = 1,.  . . , k ,  (7.4) 

l j ( U )  = E,, [Hj(x; u2)] = 0, j = k + 1, .  . . , M ,  

where HJ (X) is the j-th sample performance, driven by an input vector X E R" with pdf 
f(x; ul), and u = (u1, u2) is a decision parameter vector belonging to some parameter 
set Y c R". 

When the objective function !o(u) and the constraint functions !,(u) are available an- 
alytically, ( PO) becomes a standard nonlinear programming problem, which can be solved 
either analytically or numerically by standard nonlinear programming techniques. For 
example, the Markovian queueing system optimization falls within this domain. Here, 
however, i t  will be assumed that the objective function and some of the constraint functions 
in (PO) are not available analytically (typically due to the complexity of the underlying 
system), so that one must resort to stochastic optimization methods, particularly Monte 
Carlo optimization. 

The rest of this chapter is organized as follows. Section 7.2 deals with sensitivity analysis 
of DESS with respect to the distributional parameters. Here we introduce the celebrated 
score function (SF) method. Section 7.3 deals with simulation-based optimization for 
programs of type (PO) when the expected values E,, [Hj(X, uz)] are replaced by their 
corresponding sample means. The simulation-based version of (PO) is called the stochus- 
tic counterpart of the original program (PO). The main emphasis will be placed on the 
stochastic counterpart of the unconstrained program (PO). Here we show how the stochas- 
tic counterpart method can approximate quite efficiently the true unknown optimal solution 
of the program (PO) using a single simulation. Our results are based on [15, 17, 181, where 
theoretical foundations of the stochastic counterpart method are established. It is interesting 
to note that Geyer and Thompson [2] independently discovered the stochastic counterpart 
method in 1995. They used it to make statistical inference for a particular unconstrained 
setting of the general program (PO). Section 7.4 presents an introduction to sensitivity 
analysis and simulation-based optimization of DEDS. Particular emphasis is placed on sen- 
sitivity analysis with respect to the distributional parameters of Markov chains using the 
dynamic version of the SF method. For a comprehensive study on sensitivity analysis and 
optimization of DEDS, including different types of queueing and inventory models, the 
reader is referred to [ 161. 

7.2 THE SCORE FUNCTION METHOD FOR SENSITIVITY ANALYSIS OF 
DESS 

In this section we introduce the celebratedscore function (SF) methodfor sensitivity analysis 
of DESS. The goal of the SF method is to estimate the gradient and higher derivatives of 
!(u) with respect to the distributional parameter vector u, where the expected performance 
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is given (see (7.1)) by 
l ( U )  = IEu[H(X)I 7 

with X - f(x; u). As we shall see below, the S F  approach permits the estimation of all 
sensitivities (gradients, Hessians, etc.) from a single simulation run (experiment) for a 
DESS with tens and quite often with hundreds of parameters. We closely follow [16]. 

Consider first the case where u is scalar (denoted therefore u instead of u) and assume 
that the parameter set 'Y' is an open interval on the real line. Suppose that for all x the pdf 
f(x; u) is continuously differentiable in u and that there exists an integrable function h(x) 
such that 

for all u E Y .  Then under mild conditions [18] the differentiation and expectation (inte- 
gration) operators are interchangeable, so that differentiation of l (u )  yields 

d df(x; .) dx - - - 1 H(x) f(x; u)dx = 1 H ( x ) 7  
du d u  

where 
d In f(x; u )  

du 
S(u; x) = 

is the score function (SF); see also (1.64). It is viewed as a function of u for a given x. 

gradient and the higher-order derivatives of l(u) in the form 
Consider next the multidimensional case. Similar arguments allow us to represent the 

VQ(u) = IEu [fl(X) s y u ;  X)] , (7.6) 

where 

is the Ic-th orderscore function, k = 0,1 ,2 ,  . . .. In particular, S(O) (u; x) = 1 (by definition), 
S(')(u; x) = S(u; x) = V In j(x; u) and S(2)(u; x) can be represented as 

S(2)(u; x) = VS(u; x) + S(u; x) S(u; X)T 

(7.8) 
= v2 In j(x; u) + v In j(x; u) v In j(x; u ) ~ ,  

where V In f(x; u ) ~  represents that transpose of the column vector V In f(x; u) of partial 
derivatives of In f(x; u). Note that all partial derivatives are taken with respect to the 
components of the parameter vector u. 

Table 7.1 displays the score functions S(u; z) calculated from (7.6) for the commonly 
used distributions given in Table A. 1 in the Appendix. We take u to be the usual parameters 
for each distribution. For example, for the Gamma(@, A) and N(p, a2)  distributions we 
take u = (a, A) and u = ( p ,  a) .  respectively. 
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Table 7.1 Score functions for commonly used distributions. 

Distr. f (2; 4 S(u; x) 

E X P ( 4  x e-Ax x-' - 5 

xaxa-l e -Ax 
Garnrna(a, A )  

Weib(a, A) ax (Ax),-' (a-1 + In(As)[I - (AX)"], :[I-  (XX)"]) 

P(1 -PIx-'  

x - np 

rn 
1 - p x  

607 
In general, the quantities Vk!(u), k = 0 ,1 , .  . . , are not available analytically, since the 

response !(u) is not available. They can be estimated, however, via simulation as 

It is readily seen that the function [(u) and all the sensitivities Vk!(u) can be estimated 
from a single simulation, since in (7.6) all of them are expressed as expectations with respect 
to the same pdf, f(x; u). 

The following two toy examples provide more details on the estimation of V!(u). Both 
examples are only for illustration, since VkC( u) is available analytically. 

 EXAMPLE^.^ 

Let H(X) = X, with X N Ber(p = u) ,  where u E [0,1]. Using Table 7.1 for the 
Bin(1, p )  distribution, we find immediately that the estimator of V!(U) is 

h 1 x - - U  
V l ( U )  = - E X i ;  = - 

i=l ~ ( 1  - u )  U N  ,=I 
N 

(7.10) 

where XI, . . . , X N  is a random sample from Ber(u). In the second equation we have 
used the fact that here X: = X,. The approximation sign in (7.10) follows from the 
law of large numbers. 

Suppose that u = f. Suppose also that we took a sample of size N = 20 from 
Ber( f )  and obtained the following values: 

(21, .  . . , Z Z O }  = { 0 , ~ , 0 , 0 , ~ , 0 , 0 , ~ , ~ , ~ , 0 , ~ , 0 , ~ , ~ , ~ , ~ , 0 , ~ , 1 } .  
h 

From (7.10) we see that the sample derivative is V!( f )  = 1.1, while the true one is 
clearly v!(;) = I. 
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EXAMPLE7.3 

Let H(X) = X ,  with X - Exp(X = u). This is also a toy example since V!(u) = 
-1/u2. We see from Table 7.1 that S(u; 2) = u-l - 2, and therefore 

- N  
I 1 

N 
G(U) = - c xi (u-1 - Xi) =: -- 

212 
i=l  

(7.11) 

is an estimator of V!(u), where XI,. . . , XN is a random sample from Exp(u). 

EXAMPLE 7.4 Example 7.1 (Continued) 

As before, let H ( X ;  us, 214) = rnax(X1 + 213, X2 + u 4 ) .  where X = (XI, X2) is a 
two-dimensional vector with independent components and X, - f,(X, u,), i = 1,2 .  
Suppose we are interested in estimating Vt(u1) with respect to the distributional 
parameter vector u1 = (u1,uz). We have 

. N  

where S(u1; Xi) is the column vector (S(u1; Xli), S(u2; X2i))T. 
Next, we shall apply the importance sampling technique to estimate the sensitivities 

VkP(u) = E,[H(X) S ( k ) ( ~ ;  X)] simultaneously for several values of u. To this end, 
let g(x) be the importance sampling density, assuming, as usual, that the support of g(x) 
contains the support of Il(x),f(x; u) for all u E Y .  Then Vke(u) can be written as 

Vk!(u) = E,[H(X) s y u ;  X) W(X; u)] , (7.12) 

where 

(7.13) 

is the likelihood ratio of f(x; u) and g(x). The likelihood ratio estimator of VkP(u) can 
be written as 

l N  
Vk!(u) = - c H ( X a )  S(k)(u; X,) W(X,; u) , 

a=1 
N 

(7.14) 

where XI, . . . , XN is a random sample from g(x). Note that Vk!(u) is an unbiased 
estimator of Vk!(u) for all u. This means that by varying u and keeping g fixed we can, 
in principle, estimate unbiasedly the whole response surface {Vk!(u), u E W }  from a 
single simulation. Often the importance sampling distribution is chosen in the same class 
of distributions as the original one. That is, g(x) = f(x; v) for some v E W .  If not 
stated otherwise, we assume from now on that g(x) = f(x; v), that is, we assume that the 
importance sampling pdf lies in the same parametric family as the original pdf f(x; u). If 
we denote the likelihood ratio estimator of !(u) for a given v by qu; v), that is, 

. N  
1 

?(u; v) = - c H(X,) W(X& u, v) 
i=l  

N 
(7.15) 
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with W(x; u, v) = f (x;  u)/f(x; v), and the estimators in (7.14) by Vkl(u; v), then (see 
Problem 7.4) 

N 

(7.16) 
1 
N 

v q u ;  v)  = v q u ;  v) = - c H(Xi) s y u ;  Xi) W(Xa; u, v) . 
i=l 

Thus, the estimators of sensitivities are simply the sensitivities of the estimators. 
Next, we apply importance sampling to the two toy examples 7.2 and 7.3, and show how 

to estimate Vkl(u) simultaneously for different values of u using a single simulation from 
the importance sampling pdf f(x; v). 

EXAMPLE 7.5 Example 7.2 (Continued) 

Consider again the Bernoulli toy example, with H(X) = X and X - Ber(u). 
Suppose that the importance sampling distribution is Ber(.o), that is 

g(z) = f (z ;v)  = v”(1 - v)l-” , z = 0 , l  . 

Using importance sampling we can write vk.t(u) as 

where X - Ber(w). Recall that for Bin(1,u) we have S(u; z)= e. The corre- 
sponding likelihood ratio estimator of Vkl(u.) is 

u 1 ’” 
= - - c xi S ( k ) ( u ;  Xi) , 

i=l 

where XI,  . . . , X N  is a random sample from Ber(v). In the second equation we have 
used the fact that Xi is either 0 or 1. For Ic = 0 we readily obtain 

N 
&;v) = - u l  - e x t ,  

i=l 
v N  

which also follows directly from (7.15), and for Ic = 1 we have 

(7.18) 

which is the derivative of Z(u; TI), as observed in (7.16). Note that in the special 
case where v = u, the likelihood ratio estimators z(u; u)  and VC(u; u )  reduce to 
the CMC estimator c,”=, Xi (sample mean) and the earlier-derived score function 
estimator (7.10), respectively. As a simple illustration, suppose we took a sample 
from Ber(v = 1/2) of size N = 20 and obtained 

h 

{51,’..,z20) = { ~ l ~ , ~ , o , ~ , ~ , o , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ }  



208 SENSITIVITY ANALYSIS AND MONTE CARLO OPTIMIZATION 

Suppose that, using this sample, we wish to estimate the quantities t ( u )  = E,[X] 
and Vl(u)  simultaneously for u = 1/4 and u = 1/10. We readily obtain 

A 1/4 11 11 
[ (u  = 1/4; v = 1/2) = - - = - 

1/2 20 40 ' 

A 1/10 11 11 
e(u = 1/10; v = 1/2) = - - - - - 

1/2 20 100 ' 

and %(u; v) = 11/10 for both u = 1/4 and 1/10, 

H EXAMPLE 7.6 Example 7.3 (Continued) 

Let us consider the estimation of V k l ( u )  simultaneously for several values of 21. in 
the second toy example, namely, where H ( X )  = X and X - Exp(u). Selecting the 
importance sampling distribution as 

g(x) = f ( z ; v )  = ve -uz ,  x > 0 

for some v > 0 and using (7.14), we can express V k l ( u )  as 

where X - Exp(v) and (see Table 7.1) S(u;z)  = 
estimator of Vk!(u) (see (7.14)) is 

. The sample average 

where X I , .  . . , XN is a random sample from Exp(v). For k = 0 we have 

uePuX' 1 
v e - u x ~  u 

N 

Y 

1 
N 

qu;  v) = - c xt- - - , 
r = l  

and for k = 1 we obtain 

1 N 
h 1 uewuXt 1 - U X ~  
V l ( u ; v )  = - ~xt--  z5 -- 

v e-VXi u u2 ' 
i = l  

N 

(7.19) 

(7.20) 

which is the derivative of q u ;  v), as observed in (7.16). Note that in the particular 
case where v = u, the importance sampling estimators, l (u;  11,) and V!(u; u) ,  reduce 
to the sample mean (CMC estimator) and the SF estimator (7.1 l), respectively. 
For a given importance sampling pdf f(x; v), the algorithm for estimating the sensi- 

tivities Vkl(u),  k = 0,1, . . ., for multiple values u from a single simulation run is given 
next. 

h 
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Algorithm 7.2.1 

1. Generate a sample XI,. . . , X N  from the importance samplingpa'f f (x; v), which 
must be chosen in advance. 

2. Calculate the sampleperformance H(Xi) andthescores S ( k ) ( ~ ;  Xi), a = 1, . . . , N ,  
for the desired parameter value($ u. 

3. Calculate Vke(u; v) according to (7.16). 

From Algorithm 7.2.1 it follows that in order to estimate the sensitivities Vkl(u),  k = 
1 , 2 , .  . ., all we need is to apply formula (7.16), which involves calculation of the perfor- 
mance H(Xi) and estimation of the scores S ( k ) ( ~ ;  Xi) based on a sample XI , .  . . , X,v 
obtained from the importance sampling pdf f(x; v). 

Confidence regions for Vkl(u) can be obtained by standard statistical techniques. In par- 
ticular (see, for example, [18] and Section l.lO), N ' / 2  Vkl(u;v)  - V'l(u)] converges 
to a multivariate normal random vector with mean zero and covariance matrix 

[- 

Cov,(H S ( k )  W )  = E, [ H 2  W 2  S ( k ) s ( k )  '1 - [V~l(u)][V"(u)]T, (7.21) 

using the abbreviations H = H(X), S ( k )  = S(')(U; x) and W = W(X; u,v). From now 
on, we will use these abbreviations when convenient, abbreviating S( l )  further to S. 

In particular, in the case k = 0, the variance of ê (u; v), under the importance sampling 
density f(x; v), can be written as 

Var (i(u; v)) = E, [ ~ 2  ~ 2 1  - ~ ( u )  . (7.22) 

The crucial issue is, clearly, how to choose a good importance sampling pdf, which 
ensures low-variance estimates of l(u) and Vl(u).  As we shall see, this is not a simple 
task. We start with the variance of F(u; v). We shall show that for exponential families of 
the form (A.9) it can be derived explicitly. Specifically, with 8 taking the role of u and 77 
the role of v, we have 

= E, [W2(X;e,q)] Eze-, [H2(X)] . (7.23) 

Note that E, [W2(X; 8: q)] = EO [W(X; 0,  q)]. 
Table 7.2 displays the expectation E, [ W 2 ( X ;  u,  v)] for common exponential families 

in Tables A. 1 and 7.1. Note that in Table 7.2 we change one parameter only, which is 
denoted by u and is changed to v. The values of E,, [ W 2 ( X ;  u, v)] are calculated via (A.9) 
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and (7.23). In particular, we first reparameterize the distribution in terms of (A.9). with 
0 = $(u) and 7 = $(v), and then calculate 

(7.24) 

At the end, we substitute u. and 71 back in order to obtain the desired E, [ W 2 ( X ;  u, v)]. 

Table 7.2 E,[WZ] for commonly used distributions. 

e - e H  In u 

( U / v ) 2 a  

2 (u/v)oI - 1 
uz - 2uv + v 

) n  ( (1 - u)v 

e (  +) 
U’(V - 1) 

v(u2 - 2u + v) .u(1 - u)z- l  In(1 - u)  1 - e0 

Consider, for example, the Garnma(cr, u )  pdf. It readily follows that in order for the 
estimator $11,; , I ) )  to be meaningful (Var(z(u.; v)) < cm), one should ensure that 2u - 71 > 0, 
(v < 2 u); otherwise, W will “blow up” the variance of the importance sampling estimator 
~ ( I L ;  71). A more careful analysis [ 181 (see also Proposition A.4.2 in the Appendix) indicates 
that in this case ‘u should be chosen smaller than u (instead of smaller than 2u) because the 
optimal importance sampling pdf f(z; v*) has a “fatter” tail than the original pdf f(s; u).  
A similar result holds for the estimators of Vkt?(u) and for other exponential families. 

Consider next the multidimensional case X = ( X I , .  . . , X n ) .  Assume for concrete- 
ness that the {Xi} are independent and Xi - Exp(ui). It is not difficult to derive (see 
Problem 7.3) that in this case 

n .  

(7.25) 

where 61; = (uk - v k ) / U k ,  k = 1,.  . . , n is the relativeperturbation in Uk. For the special 
case where bk does not depend on k ,  say, b k  = 6, k = 1,. . . , n, we obtain 

Var,,(HW) = (1 - b 2 ) p n  E~,-, [ H ~ ]  - e2 . (7.26) 

We point out that for fixed 6 (even with u < 2u, which corresponds to 6 < l), the 
variance of H W  increases exponentially in ‘n. For small values of 6, the first term on the 
right-hand side of (7.26) can be approximated by 

( 1 - - 6 * ) - ~  =exp{-nIn(1-62)}  =:exp{nb2} , 
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using the fact that for small z, In( 1 + z) =: z. This shows that in order for the variance of 
H W to be manageably small, the value nb2 must not be too large. That is, as n increases, 
62 should satisfy 

b2 = U(n-1) . (7.27) 

It is shown in [ 181 that an assumption similar to (7.27) must hold for rather general distri- 
butions and, in particular, for the exponential family. 

Formula (7.27) is associated with the so-called trust region, that is, the region where the 
likelihood ratio estimator V k t ( u ;  v) can be trusted to give a reasonably good approximation 
of V’l(u). As an illustration, consider the case where ui = u, vi = 1)  for all i and n = 100. 
It can be seen that the estimator e^(u; w) performs reasonably well for 6 not exceeding 0.1, 
that is, when the relative perturbation in u is within 10%. For larger relative perturbations, 
the term E,[W2] “blows up” the variance of the estimators. Similar results also hold for 
the derivatives of [(u) .  

The above (negative) results on the unstable behavior of the likelihood ratio W and 
the rapid decrease of the trust region with the dimensionality n (see (7.27) do not leave 
much room for importance sampling to be used for estimation of Vk!(u), k 2 0 in 
high dimensions. For such problems we suggest, therefore, the use of the score function 
estimators given in (7.9) (the ones that do not contain the likelihood ratio term W )  as 
estimators of the true Vkl(u).  For low-dimensional problems, say n 5 10, one can still 
use the importance sampling estimator (7.14) for Vkl(u),  provided that the trust region is 
properly chosen, say when the relative perturbation 6 from the original parameter vector 
u does not exceed 10-20%. Even in this case, in order to prevent the degeneration of the 
importance sampling estimates, it is crucial to choose the reference parameter vector v such 
that the associated importance sampling pdf f(x; v) has a “fatter” tail than the original pdf 
f(x; u); see also Section A.4 of the Appendix. 

7.3 SIMULATION-BASED OPTIMIZATION OF DESS 

Consider the optimization program (PO) in (7.4). Suppose that the objective function 

lo(.) = L, [Ho(X; UP)]  

and some of the constraint functions 

are not available in an analytical form, so that in order to solve (PO) we must resort to 
simulation-based optimization, which involves using the sample average versions, &(u) and 
&,(u) insteadofBo(u) and!j(u), respectively. Recall thattheparametervectoru = (u1, ug) 
can have distributional and structural components. 

Next, we present a general treatment of simulation-based programs of type (PO), with 
an emphasis on how to estimate the optimal solution u* of the program (Po) using a single 
simulation run. Assume that we are given a random sample X I ,  Xg, . . . , XN from the pdf 
f(x; u1) and consider the following two cases. 

Case A. Either of the following holds true: 

1. It is too expensive to store long samples XI, X2,. . . , XN and the associated se- 
quences {e^,(u)>. 
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2. The sample performance, &(u), cannot be computed simultaneously for different 
values of u. However, we are allowed to set the control vector, u, at any desired 
value u ( ~ )  and then compute the random variables &(u(") and (quite often) the 
associated derivatives (gradients) Vej(u), at u = u ( ~ ) .  

Case B. Both of the following hold true: 

1. It is easy to compute and store the whole sample, XI, Xz, . . . , XN. 

2. Given a sample XI, Xz, . . . , XN, it is easy to compute the sample performance 2; (u) 
for any desired value u. 

From an application-oriented viewpoint, the main difference between Case A and Case 
B is that the former is associated with on-line optimization, also called stochastic approx- 
imation, while the latter with of-line, also called stochastic counterpart optimization or 
sample average approximation. As for references on stochastic approximation and the 
stochastic counterpart method we refer to [ 101 and [ 181, respectively. 

The following two subsections deal separately with the stochastic approximation and the 
stochastic counterpart methods. 

7.3.1 Stochastic Approximation 

Stochastic approximation originated with the seminal papers of Robbins and Monro [ 131 
and Kiefer and Wolfowitz [7]. The latter authors deal with on-line minimization of smooth 
convex problems of the form 

min!(u), u E Y ,  (7.28) 

where it is assumed that the feasible set Y is convex and that at any fixed-in-advance point 
u E Y an estimate o^e(u) of the true gradient Vl(u)  can be computed. Here we shall 
apply stochastic approximation in the context of simulation-based optimization. 

The stochastic approximation method iterates in u using the following recursive formula: 

U 

where P I ,  P 2 ,  . . . is a sequence of positive step sizes and rIy denotes the projection onto 
the set Y ,  that is, Ily(u) is the point in "Y closest to u. The projection EY is needed in 
order to enforce feasibility of the generated points {u'')'). If the problem is unconstrained, 
that is, the feasible set Y coincides with the whole space, then this projection is the identity 
mapping and can be omitted from (7.29). 

It is readily seen that (7.29) represents a gradient descentprocedure in which the exact 
gradients are replaced by their estimates. Indeed, if the exact value V!(U(~)) of the gradient 
was available, then -V!(U(~)) would give the direction of steepest descent at the point 
~ ( ~ 1 .  This would guarantee that if V!(U(~)) # 0, then moving along this direction the 
value of the objective function decreases, that is, C ( U ( ~ )  - V ~ ( U ( ~ ) ) )  < !(u(~)) for /II > 0 
small enough. The iterative procedure (7.29) mimics that idea by using the estimates of 
the gradients instead of the true ones. Note again that a new random sample XI,. . . , XN 
should be generated to calculate each o^e(uct)), t = 1 , 2 ,  . . .. 

We shall now present several alternative estimators Vl(u)  of V ~ ( U )  considering the 
model in Example 7.1. 

h 
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EXAMPLE 7.7 Example 7.1 (Continued) 

As before, let H ( X ;  u3, u4) = max{X1 + u3, X2 + u4}, where X = ( X I ,  X2) is a 
two-dimensional vectorwith independentcomponents, and Xi N f i ( X ;  ui), i = 1 , 2 .  
Assume that we are interested in estimating the four-dimensional vector VC(u), where 
l(u) = EU,[H(X;u2)] ,  u = (u1,uz)  = ( u 1 , ~ 2 , ~ . 3 , ~ , 4 ) ,  with respect to both the 
distributional parameter vector u1 = (u1, uz), and the structural one u2 = (u3, u4). 

We shall now devise three alternative estimators for OC(u). They are called (a) 
the direct, (b) inverse-transform, and (c) push-out estimators. More details on these 
estimators and their various applications are given in [ 161. 

(a) The direct estimator ofVe(u). We have 

“u) = Ell, [ H ( X ;  u2)], (7.30) 

and similarly for d l (u) /du2  and a!(u)/au4. Here 

(7.31) 

(7.32) 

(7.33) 

and similarly for dH(X;u2) /du4 .  The sample estimators of a!(u)/aui, i = 
1, . . . ,4 can be obtained directly from their expected-value counterparts - hence 
the name direct estimators. For example, the estimator of a l (u) /au3 can be written 
as 

N 
----(I) 1 a H ( x , ; U 2 )  vc3 (u) = -c 

a u 3  
9 

i=l  N 
(7.34) 

whereX1,. . . , X N  isasamplef romf(x ;u l )  = f l ( q ; u l )  f2(z2;212),andsimilarly 
for the remaining estimators 611’(u) of al(u) /du, ,  i = 1 , 2 , 4 .  

(b) The inverse-transform estimator of Vf!(u). Using the inverse transformations 
X, = F[’ (Z,; u,), where 2, N U(0, l ) ,  i = 1,2,  we can write H ( X ;  u2) altema- 
tively as 

k ( z ;  u) = max{F;’(Zl; u1) + w3, ~ ~ ~ ( ~ 2 ; u z )  + u4}, 

where Z = (21, Zl ) .  The expected performance !(u) and the gradient Ve(u) can 
be now written as 

!(u) = Eu[k(Z;  u)] 

and 
V q u )  = Eu[Vk(Z;  u)]  , 

respectively. Here U denotes the uniform distribution. It is readily seen that in the 
inverse-transform setting all four parameters ul ,  u2, u3, u4 become structural ones. 
The estimator of Ve(u) based on the inverse-transform method, denoted as e(a) (u), 
is therefore 

N - (2) 1 ve 
N (u) = - c Vri(Z,; u) , 

i=l 

(7.35) 
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where the partial derivatives of k iz ;  u) can be obtained similarly to (7.33). Note 
that the first-order derivatives of H ( z ;  u)  are piecewise-continuous functions with 
discontinuities at points for which FY1(z2;  211) + uz = FT’(z2; ‘112) + 214. 

(c) the push-out estimator ofVl( u). Define the following two random variables: 
X1 = X1 + 213 and X2 = X2 + 214. By doing so, the original sample performance 
H ( X ;  213, 214) = max{ X1 + u3, X2 + 214) and the expected value l( u) can be written 
as k(X) = max{ 21,22) and as 

- - 

t (u)  = ET[H(X)I = ET[max{Xl, 2 2 1 1  , 

respectively. Here s i s  the pdf of X; thus, f(x; u) = f l ( z 1  - 213;211) f 2 ( z z  - 
214; 212) = fl (z; 211, 213) f 2 ( z ;  212, 214). In this case we say that the original structural 
parameters 213 and 214 in If(.) are “pushed out” into the pdf f .  

As an example, suppose that X j  N Exp(vj), j = 1,2 .  Then the cdf F ~ ( X )  of 
21 = X1 + u3 and the cdf F2(z)  of 2 2  = X2 + u4 can be written, respectively, as 

(7.36) 

- 
- 
F1(z )  = P ( X 1  6 z) = P(X1 < 2 - 213) = F1(z - 213) 

(7.37) 

and 
(7.38) 

It is readily seen that in the representation (7.36) all four parameters 211, . . . ,214 

are distributional. Thus, in order to estimate Vkl?(u) we can apply the SF method. 
In particular, the gradient 

can be estimated as 

(7.39) 

Recall that a H ( X ;  u1)/Bu1 and a H ( X ;  21l)/du2 are piecewise-constant functions 
(see (7.33)) and that d 2 H ( X ;  ul)/a$ and a 2 H ( X ;  ul)/au; vanish almost every- 
where. Consequently, the associated second-order derivatives cannot be interchanged 
with the expectation operator in (7.30). On the other hand, the transformed function 
e(u) in (7.36) and its sample version o^e‘3’(u) are both diflerentiablein u everywhere, 
provided that f l (z l  - 2 1 3 ; ~ ~ )  and f z ( z 2  - 2 1 4 ; ~ ~ )  are smooth. Thus, subject to 
smoothness of f(x; u), the push-out technique smoothes out the original non-smooth 
performance measure H ( . ) .  

Let us return to stochastic optimization. As we shall see from Theorem 7.3.1 below, 
starting from some fixed initial value u(’), under some reasonable assumptions the sequence 
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{ u ( ~ ) }  converges asymptotically in t to the minimizer u* of the objective function e(u) 
over ’Y. Typically, in order to guarantee the convergence, the following two conditions are 
imposed on the step sizes: (a) Czl Pt = m, and (b) El“=, < 00. For example, one 
can take Pt G c/t for some c > 0. There are many theorems on the convergence and rate of 
convergence for stochastic optimization. One of the simplest, taken from [lo], is presented 
next. 

Theorem 7.3.1 Assume that C is smooth andstrictly convex, that is, 

(7.40) 

Assume further that the errors in the stochastic gradient vector Ve(u) possess a bounded 
second moment, that is, 

P e(u + h) 2 e(u) + [Ve(u)]’h + - h’h, > 0 .  
2 

h 

Then, for an arbitrary (deterministic) positive sequence {Pt} such that 

co 

t=l t= l  

the vector u ( ~ )  converges asymptotically to U’ (the minimizer of e(u)) in the sense of mean 
square. ,f; moreover; 

with an appropriate constant c (whether a given c is appropriate depends only on ,B in 
(7.40)), then for all t we have the following bounds: 

Pt = c/t, 

and 
IE [e(U(t))  - C(U*)] G O ( l / t )  , 

where A ( P ,  c)  is some constant depending on P and c. 

Attractive features of the stochastic approximation method are its simplicity and ease 
of implementation in those cases in which the projection n,(.) can be easily computed. 
However, it also has severe shortcomings. The crucial question in implementations is the 
choice of the step sizes {Pt}. Small step sizes result in very slow progress toward the 
optimum, while large step sizes make the iterations “zigzag”. Also, a few wrong steps in 
the beginning of the procedure may require many iterations to correct. For instance, the 
algorithm is extremely sensitive to the choice of the constant c in the step size rule Pt = c/t. 
Therefore, various step size rules have been suggested in which the step sizes are chosen 
adaptively. Another drawback of the stochastic approximation method is that it lacks good 
stopping criteria and often has difficulties handling even relatively simple linear constraints. 

7.3.2 The Stochastic Counterpart Method 

The underlying idea in the stochastic counterpart approach is to replace all the expected 
value functions in the deterministic program (PO) by their sample average equivalents 
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and then solve the latter by standard mathematical programming techniques. The resultant 
optimal solution provides an estimator of the corresponding true optimal one for the original 
program (PO). 

If not stated otherwise, we shall consider here the unconstrained program 

min [(u) = min E,, [H(X; uz)] . 
UE Y UEY 

(7.41) 

The general constrained program (PO) is treated in [ 181. 
Assume that W is an open set and that [(u) is continuously differentiable on W .  Then, 

by the first-order necessary conditions, the gradient of [(u) at an optimal solution point, u*, 
must vanish. Consequently, the optimal solution U* can be found by solving the equation 
system 

V q u )  = 0 , u E W . (7.42) 

Using the importance sampling pdf f(x; vl) .  one can write the stochastic counterpart 
of (7.41) as 

N 

(7.43) 1 
U E Y  U E Y  N 
min Z(u; v1) = min - C H ( x ~ ;  u2) w ( x ~ ;  u1, v1) , 

i= 1 

where X I , .  . . , XN is a random sample from the importance sampling pdf f(x; v1) and 

Assuming further that F(u; v1) is continuously differentiable on W ,  the optimal solution of 
(7.43) can be estimated by solving the equation system 

h .. 
Vl(u;v1) = V!(u;v1) = 0 ,  u E W ,  (7.44) 

which itself may be viewed as a stochastic counterpart of the deterministic system (7.42). 
Thus, we simply take the gradient of the likelihood ratio estimator e^(u; vl)  as an estimator 
for the gradient of l at u; see also (7.16). 

Note that (7.44) can be written as 

Recall that we can view the above problem as the sample average approximation of the 
true (or expected value) problem (7.41). The function e^ (q  v1) is random in the sense that it 
depends on the corresponding sample X1, . . . , XN. However, note that once the sample is 
generated, Z(u; v1) becomes a deterministic function whose values and derivatives can be 
computed for a given value of the argument u. Consequently, the problem (7.43) becomes a 
deterministic optimization problem, and one can solve it with an appropriate deterministic 
optimization algorithm. For example, in the unconstrained case it can be solved by using, 
say, the steepest descent method, that is, 
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where the step size Pt is obtained by a line search, for example, 
A 

Dt E argmin{e(u(t) - PVZ(U(~); vl); v1)) , 
P 

and, as before, IIy denotes the projection onto the set Y .  Note that this procedure is 
different from the stochastic approximation method (7.29) in three respects: 

1. The step sizes ,Bt are calculated by a line search instead of being defined a priori. 

2. The same sample X I , .  . . , XN is used for all V ~ U ( ~ ) ;  v1). 

3. Typically, a reasonably large sample size N i s  used in (7.46) as compared to stochastic 
optimization in (7.29). 

Next, we consider the particular case of the program (7.41) where u is a distributional 
decision parameter vector, that is, we consider the following program: 

min P(u) = min iEu[H(X)] 
U € Y  U E Y  

(7.47) 

To estimate the optimal solution u* of the program (7.47), we shall use the score function 
method. In this case the program (7.43) reduces to 

N 1 
min ê (u; v) = min - C H ( x ~ )  w(x,; u, v) , 
UEY U E Y  N 

Z = 1  

(7.48) 

where XI,  . . . , XN is a random sample from the importance sampling pdf f(x; v). and 

By analogy to (7.45) we have 

- N  
(7.49) 

Remark 7.3.1 It is important to note that while solving the stochastic counterpart (7.48) 
based on likelihood ratios, the trust region issue becomes crucial. In particular, the following 
two requirements must hold: 

(a) The reference parameter vector v must be chosen carefully, that is, the importance 
sampling pdf f(x; v) must have a “fatter” tail than the original pdf f (x; u) (see 
also Section A.4 of the appendix); otherwise, the degeneracy of the likelihood ratio 
W(x; u, v) is likely to occur. 

(b) The trust region Y of all possible values of v should be known in advance and Y 
should not be chosen too wide. In particular, it should satisfy (7.27). If the region Y 
is too wide, the likelihood ratio term W ( x ;  u, v) will “blow up” the variance of the 
estimate of (7.48). In this case, alternative methods (not involving likelihood ratio 
terms), like the steepest descent method (7.46), should be used. Common alternatives 
are the steepest descent and the stochastic approximation methods. 



218 SENSITIVITY ANALYSIS AND MONTE CARL0 OPTIMIZATION 

W EXAMPLE 7.8 Stochastic Shortest Path 

Consider the stochastic shortest path problem in Example 5.14 on page 140. Suppose 
the components {X,} are independent and X, - Exp(uL1), i = 1,. . . , 5 ,  with 
u = (1,2, u, 4 , 5 ) ,  for some ‘u > 0. Suppose our objective is to solve the following 
program: 

minC(u) = min[3.1 -E,[S(X)] f 0 . 1 ~ 1 ,  
UEY U E Y  

where W = {‘u, : 1 5 2~ 5 4}, S(X) = min{XI+ Xd, X I +  X3 + Xg, X2 + X3 + 
X4, X2 + Xg} denotes the length of the shortest path. The function C(u) is difficult 
to evaluate exactly but can be estimated easily via Monte Carlo simulation, yielding 
a “noisy” function 3u) .  Figure 7.1 displays estimates and confidence intervals for 

(7.50) 

various values of u, using for each estimate a sample size of N 
minimizer, say u* ,  seems to lie in the interval [1,2]. 

o.2 t 

0.05 1 1 1  I I I I I I I ’  
I 

= 50,000. The 

0’ 
0 1 2 3 4 

U 

Figure 7.1 
the minimum is attained between 1 and 2. 

Minimize e(u) with respect to u. Estimates and 95% confidence intervals indicate that 

To find u,* via the stochastic counterpart method, we can proceed as follows. First, 
the derivative of C(u) satisfies 

1 
10 

oqu) = - - IE,[S(X) S(u; X) W(x; u, v)] 

1 x3 - 21 v - x 3 ( u - - 1 - , - l )  
= - 10 - E, [S(X)-- u2 u e 

where the score function S(u; X) is given by 
x3 - 71. 

Hence, the stochastic counterpart of VC(u) = 0 is 
N 

1 v  x3i - - x 3 , ( l l - l - Y - l )  = 0 h 

VC(u; 11) = - - - c s(xi)- e 
u3 

> 

i= 1 
10 N 

(7.51) 



SIMULATION-BASED OPTIMIZATION OF OESS 219 

with X I ,  . . . , XN simulated under parameter u. The choice of '11 here is crucial. In 
[ 161 the following method is proposed for choosing a "good" parameter v. First, one 
imposes some constraints on u, that is, u1 < u < 212, reflecting our prior knowledge 
about the optimal u* (lying between v1 and v2). In our case, we could take v1 = 1 
and 212 = 4, for example, since Y = {u :< u 5 4). Once these constraints have 
been determined, one takes v from this interval such that the tails of the corresponding 
distribution are as fat as possible to ensure that the likelihood ratio behaves well. In 
this case, it means taking u = 4. 

Figure 7.2 shows the graph of 6 ( u ;  u )  as a function of u (solid line). It was 
obtained from a sample of size N = 500,000 using u = 4. Recall that by definition 
Vl(u*)  = 0. As an estimate for u* we take the point z such that Vl(u*;  v) = 0. 
This can be found by standard root-finding procedures, for example, Matlab's f zero 
function. In this example, we find that 2 = 1.37. 

- A  

0.5 1 1.5 2 2.5 3 3.5 4 
U 

Fi!gure 7.2 Estimate and 95% confidence interval for u*. The estimate is found as the root of 
ve(u; 

Next, we describe how to construct a confidence interval for 'u* from a confidence 
interval for Vl(u*).  For ease of notation we write g(u) for Vl(u)  and c(u) for 
its estimate, f%(u; TI), and we assume that both g(u)  and G(u) are monotonically 
increasing. Since $(u) is of the form 

1 l N  gu) = - - - c zi , 
i= l  

10 N 

where { Zz}  are iid random variables, an approximate (1 - a )  confidence interval for 
g ( u * )  = 0 is given by (-C, C), with C = t l - = 1 2  Sz/fi. Here SZ is the sample 
standard deviation of the { Zi}  and 21-a/2 is the 1 - a/2 quantile of the standard 
normal distribution. As a consequence, (g-'(-C), g-'(C)) is an approximate (1 - 
a )  confidenceinterval foru*.  For small C we haveg-'(C) z u* + C/g'(u*), where 
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9' is the derivative of g, that is, the second derivative of e. The latter is given by 

1 2u2 - 4ux3 + xi v -x3("-l-y-l) 
g'(u.) = 0 2 l ( U )  = -lE, - e  

214 U 

and can be estimated via its stochastic counterpart, using the same sample as used to 
obtain ~ ( z L ) .  Indeed, the estimate of g'(u) is simply the derivatke of g a t  u. Thus, an 
approximate (1 - a )  confidence interval for u.* is 2 f C/g(u.*). This is illustrated 
in Figure 7.2, where the dashed line corresponds to the tangent line to G(u) at the 
point (2,0), and 95% confidence intervals for g(2)  and u* are plotted vertically and 
horizontally, respectively. The particular values for these confidence intervals were 
found to be (-0.0075,0.0075) and (1.28,1.46). 

Finally, it is important to choose the parameter v under which the simulation is 
carried out greater than u*. This is highlighted in Figure 7.3, where 10 replications 
of g(u) are plotted for the cases v = 0.5 and v = 4. 

0.5 1 1.5 2 2.5 3 3.5 4 
U 

0.5 1 1.5 2 2.5 3 3.5 4 
U 

h 

Figure 7.3 Ten replications of Vl(u;  u )  are simulated under 2) = 0.5 and u = 4. 

h 

In the first case the estimates of g(u )  = Vb(u; v )  fluctuate widely, whereas in the 
second case they remain stable. As a consequence, U *  cannot be reliably estimated 
under v = 0.5. For v = 4 no such problems occur. Note that this is in accordance with 
the general principle that the importance sampling distribution should have heavier 
tails than the target distribution. Specifically, under = 4 the pdf of X3 has heavier 
tails than under v = u+, whereas the opposite is true for v = 0.5. 

In general, let e" and G denote the optimal objective value and the optimal solution 
of the sample average problem (7.48), respectively. By the law of large numbers, e^(u; v) 
converges to t(u) with probability 1 (w.P. 1) as N --t 00. One can show [ 181 that under mild 
additional conditions, e" and G converge w.p. 1 to their corresponding optimal objective 
value and to the optimal solution of the true problem (7.47), respectively. That is, e'. and 2 
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are consistent estimators of their true counterparts !* and u*, respectively. Moreover, [ 181 
establishes a central limit theorem and valid confidence regions for the tuple (a* ,  u*).  The 
following theorem summarizes the basic statistical properties of u'; for the unconstrained 
program formulation. Additional discussion, including proofs for both the unconstrained 
and constrained programs, may be found in [ 181. 

Theorem 7.3.2 Let U* be a unique minimizer of !(u) over Y ,  

A. Suppose that 

I .  The set Y is compact. 

2. For almost every x , the function f (x; .) is continuous on Y .  

3. The family of functions { IH(x) f (x; u)l, u E Y }  is dominated by an integrable 
function h(x), that is, 

~ H ( x ) f ( x ; u ) ~  < h(x) forall u E Y .  

Then the optimalsolution ? of (7.48) converges to u* as N -+ m, with probability one. 

B. Suppose further that 

1. u* is an interiorpoint of Y.  

2. For almost every x, f(x; .) is twice continuously differentiable in a neighborhood 92 
of u*, andthe families offunctions { IIH(x)Vk f (x; u))I : u E 92, Ic = 1,2}, where 
IJxI( = (z: + . . . + xi) i, are dominated by an integrable function. 

3. Thematrix 
B = E, [H(X)V2W(X;u*,v)] (7.52) 

is nonsingular 

4. The covariancematrix of the vector H(X)VW(X; u', v),  given by 

c = E, [H2(X)VW(X; u*,v)(VW(X; u*,v))'] - V!(u*)(V!(u*))' , 

exists. 

Then the random vector N1f2(G - u') converges in distribution to a normal random 
vector with zero mean and covariance matrix 

B-' C B-'. (7.53) 

The asymptotic efficiency of the estimator N ' I 2 ( ;  - u*) is controlled by the covariance 
matrix given in (7.53). Under the_ass_uFptions of Theorem 7.3.2, this covariance matrix 
can be consistently estimated by B-'CB-', where 

N 

(7.54) 
1 6 = c H(X,)V2W(Xz; 2, v)  

i= l  

and 

l N  - -  - -  2 = H2(X,) VW(X,; G ,  v)(VW(X,; u';, v ) ) ~  - V!(u*; v)(VP(u*; v ) ) ~  
a=1 

(7.55) 
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are consistent estimators of the matrices B and C, respectively. Observe that these matrices 
can be estimated from the same sample {XI,  . . . , X,} simultaneously with the estimator 
u*. Observe also that the matrix B coincides with the Hessian matrix V2C(u*) and is, 
therefore, independent of the choice of the importance sampling parameter vector v. 

Although the above theorem was formulated for the distributional case only, similar 
arguments [ 181 apply to the stochastic counterpart (7.43), involving both distributional and 
structural parameter vectors u1 and u2, respectively. 

allows the construction of stop- 
ping rules, validation analysis and error bounds for the obtained solutions. In particular, 
it is shown in Shapiro [19] that if the function [(u) is twice differentiable, then the above 
stochastic counterpart method produces estimators that converge to an optimal solution of 
the true problem at the same asymptotic rate as the stochastic approximation method, pro- 
vided that the stochastic approximation method is applied with the asymptotically optimal 
step sizes. Moreover, it is shown in Kleywegt, Shapiro, and Homem de Mello [9] that if the 
underlying probability distribution is discrete and C ( U )  is piecewise linear and convex, then 
w.p. 1 the stochastic counterpart method (also called the sample path method) provides an 
exact optimal solution. For a recent survey on simulation-based optimization see Kleywegt 
and Shapiro [8]. 

The following example deals with unconstrained minimization of [(u), where u = 
(u1, u2) and therefore contains both distributional and structural parameter vectors. 

h 

The statistical inference for the estimators and 

EXAMPLE 7.9 Examples 7.1 and 7.7 (Continued) 

Consider minimization of the function 

[(u) = IE,, [H(X; ~ 2 ) ]  + bTU , 
where 

H(X; u 3 ,  u4) = max(X1 + u,3, X2 + u,q} , 
u = (u1, UZ), u1 = (ul, u2), u2 = ( u g ,  u4), X = (XI,  X2) is a two-dimensional 
vector with independent components, Xi N fi(z; ui), i = 1,2, with Xi - Exp(ui), 
and b = ( b l ,  . . . , b4) is a cost vector. 

To find the estimate of the optimal solution u' we shall use, by analogy to Example 
7.7, the direct, inverse-transform and push-out estimators of VC(u). In particular, we 
shall define a system of nonlinear equations of type (7.44), which is generated by the 
corresponding direct, inverse-transform, and push-out estimators of VC( u). Note that 
each such estimator will be associated with a proper likelihood ratio function W ( , ) .  

(7.56) 

(a) The direct estimator ofVC(u). In this case 

where X - f l  (z1; vl)f2(z2; v2) and v1 = (v l ,  ~ 2 ) .  Using the above likelihood ratio 
term, formulas (7.31) and (7.32) can be written as 

-- - IE,, [EI(X; ~ Z ) W ( X ;  u1, v l ) ~  In f l ( ~ 1 ;  .I)] + bl  
aul 

(7.57) 

and as 
-- - EV, 
au3 au.3 

(7.58) 
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respectively, and similarly ae(u) /auz  and dC(u)/au.4. By analogy to (7.34) the 
importance sampling estimator of ae(u) /du3  can be written as 

where X I , .  . . , X N  is a random sample from f(x; VI) = fl(x1;21) fz(zz; vz) ,  
and similarly for the remaining importance sampling estimators Ve;”(u; v1) of 
ae(u) /au i ,  i = 1,2 ,4 .  With this at hand, the estimate of the optimal solution u* can 
be obtained from the solution of the following four-dimensional system of nonlinear 
equations: 

(7.60) ---(I) 

w h e r e v e  = (VC, , . . . , V e 4  ). 

ve (u) = 0, E IV, 

-(I) --(I) --(I) 

(b) The inverse-transform estimafor of Ve(u). Taking (7.35) into account, the 
estimate of the optimal solution u* can be obtained by solving, by analogy to (7.60), 
the following four-dimensional system of nonlinear equations: 

(7.61) 

Here, as before, 

‘, 
i= 1 

and Z1,. . . , Z N  is a random sample from the two-dimensional uniform pdf with 
independent components, that is, Z = ( 2 1 , Z z )  and Zj - U(0, l ) ,  j = 1,2 .  Alter- 
natively, one can estimate u* using the ITLR method. In this case, by analogy to 
(7.6 1 ), the four-dimensional system of nonlinear equations can be written as 

with 

and 

where 0 = (01,0z), X = ( X I ,  X z )  N h 1 ( ~ 1 ; 0 1 ) h z ( 1 ~ ~ ; 6 ’ 2 )  and, for example, 
hi(z;  0,) = O,zot-’, i = 1,2,  that is, h,(.) is a Beta pdf. 

(c) The push-out estimator of o e ( u ) .  Taking (7.39) into account, the estimate 
of the optimal solution u* can be obtained from the solution of the following four- 
dimensional system of nonlinear equations: 

(7.63) 
-(3) oe (u;v) = 0, u E IV, 
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where 

and % - y(x) = j l ( q  - 213; 211) fi(52 - 214; 212). 
Let us return finally to the stochastic counterpart of the general program (PO). From the 

foregoing discussion, it follows that it can be written as 

minimize To (u; v l ) ,  u E Y ,  
A 

P N )  subject to: !j(u; v1) < 0, j = 1,. . . , k ,  (7.64) 

e j ( U ; V 1 ) = o ,  j = l c + i  , . . . ,  M ,  

with 
- N  

(7.65) 1 

N 
6. (u; v1) = - c Hj ( x i ;  u2)  W(X& u1, v1 ), j = 0, 1, . . . , M ,  

i= 1 

where X 1 , .  . . , XN is a random sample from the importance sampling pdf f(x; v l ) ,  and 
the {&.(u; v1)) are viewed as functions of u rather than as estimators for a fixed u. 

Note again that once the sample X I , .  . . , XN is generated, the functions ej(u; v l ) ,  j = 
0 , .  . . , M become explicitly determined via the functions H j ( X i ;  u2) and W ( X i ;  u1, v1). 
Assuming, furthermore, that the corresponding gradients 0%. (u; v1) can be calculated, 
for any u, from a single simulation run, one can solve the optimization problem (PN) by 
standard methods of mathematical programming. The resultant optimal function value and 
the optimal decision vector of the program (PN) provide estimators of the optimal values 
e* and u*, respectively, of the original one (PO). It is important to understand that what 
makes this approach feasible is the fact that once the sample XI ,  . . . , XN is generated, 
the functions lj(u), j = 0 , .  . . , M become known explicitly, provided that the sample 
functions { H j ( X ;  u2))  are explicitly available for any u2. Recall that if H j ( X ;  u2) is 
available only for some fixed in advance u2, rather than simultaneously for all values u g ,  

one can apply stochastic approximation algorithms instead of the stochastic counterpart 
method. Note that in the case where the {ITj(.)} do not depend on u2, one can solve the 
program ( P N )  (from a single simulation run) using the S F  method, provided that the trust 
region of the program ( 6 ~ )  does not exceed the one defined in (7.27). If this is not the case, 
one needs to use iterative gradient-type methods, which do not involve likelihood ratios. 

The algorithm for estimating the optimal solution, u', of the program (PO) via the 
stochastic counterpart ( 6 ~ )  can be written as follows: 

Algorithm 7.3.1 (Estimation of u*) 

- 

A 

1 .  Generate a random sample X I , .  . . , XNfrom f (x; v 1 ) .  

2. Calculate the functions H j ( X i ;  u2). j = 0, . . . , M ,  a = 1, . . . , N via simulation. 

3. Solve the program ( PN) by standard mathematical programming methods. 

4. Return the resultant optimal solution, 2 of ( F N ) ,  as an estimate of u*. 

A 
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The third step of Algorithm 7.3.1 typically calls for iterative numerical procedures, which 
may require, in turn, calculation of the functions e,(u), j = 0, . . . , M ,  and their gradients 
(and possibly Hessians), for multiple values of the parameter vector u. Our extensive 
simulation studies for typical DESSyith sizes up to 100 decision variables show that the 
optimal solution of the program (PN) constitutes a reliable estimator of the true optimal 
solution, u*, provided that the program (FN) is convex (see [18] and the Appendix), the 
trust region is not too large, and the sample size N is quite large (on the order of 1000 or 
more). 

7.4 SENSITIVITY ANALYSIS OF DEDS 

Let X I ,  Xz, . . . be an input sequence of rn-dimensional random vectors driving an output 
process {Iftl t = 0 ,1 ,2 , .  . .I. That is, H t  = H t ( X t )  for some function H t ,  where the 
vector Xt = ( X I ,  X2 ,  . . . , X , )  represents the history of the input process up to time t. Let 
the pdf of Xt be given by ft(xt; u), which depends on some parameter vector u. Assume 
that { H , }  is a regenerativeprocess with a regenerative cycle of length T .  Typical examples 
are an ergodic Markov chain and the waiting time process in the G I / G / l  system. In both 
cases (see Section 4.3.2.2) the expected steady-state performance, [(u), can be written as 

(7.66) 

where R is the reward during a cycle. As for static models, we show here how to estimate 
fromasinglesimulation run theperformance.t(u),and thederivativesVke(u), k = 1 , 2 .  . ., 
for different values of u. 

Consider first the estimation of ! R ( u )  = Eu[R] when the { X , }  are iid with pdf f(z; u); 
thus, fL(xL) = nt=, j ( z , ) .  Let g(z) be any importance sampling pdf, and let gt(xL) = 
n:=, g(zI). It will be shown that !,(u) can be represented as 

(7.67) I [R(u) = Eg wt(xt) wt(xt; u) 9 L1 
where xt - gt(xt) and W t ( X t ;  u) = f t h ;  u)/gt(xt) = nf=l f ( X , ;  u) lg (X, ) .  To 
proceed, we write 

T m 

(7.68) 
t = l  t = l  

Since T = T ( X ~ )  is completely determined by Xt,  the indicator I{,>t} can be viewed as a 
function of xi; we write I{T>t} (xt). Accordingly, the expectation of H t  I { 7 > t )  is 

= E,[Ht(Xt) r{T>L}(xt) w t ( x t ; u ) ]  ’ (7.69) 

The result (7.67) follows by combining (7.68) and (7.69). For the special case where 
Ht 5 1, (7.67) reduces to 
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abbreviating Wl (X1; u) to W,. Derivatives of (7.67) can be presented in a similar form. 
In particular, under standard regularity conditions ensuring the interchangeability of the 
differentiation and the expectation operators. one can write 

(7.70) 

where s;') is the k-th order score function corresponding to fr (xt ;  11). as in (7.7). 
Now let {XI 1 ,  . . . , X,, 1 .  . . . , X1 N ,  . . . , X,, N } be a sample of N regenerative cycles 

from the pdf g ( t ) .  Then, using (7.70). we can estimate Vkf,$(u), k = 0, I , .  . . from a 
single simulation run as 

- 
where W,, = n:=, ':;$::;) and XI, - g(5). Notice that here V k P ~ ( u )  = Vke';u). For 
the special case where g(x) = f ( x ;  u), that is, when using the original pdf f ( x ;  u). one 
has 

(7.72) 

For A- = 1, writing St  for Sf". the score function process { S t }  is given by 

1 

(7.73) 

rn EXAMPLE 7.10 

Let X - G ( p ) .  That is. / ( z ; p )  = p(1  - p ) " - ' ,  1: = 1,2..  . .. Then (see also 
Table 7.1) 

rn EXAMPLE 7.1 1 

I 
Let X - Gamma(cl. A). That is, J(x; A! a )  = 
are interested in the sensitivities with respect to A. Then 

r (u  ;.-A' for x > 0. suppose we 

a 
ax 

I 

s, = - 111j1(X1;A,a) = t a x - '  - E X ,  . 
r = l  

Let us return now to the estimation of P(u) = E,[R]/E,[T] and its sensitivities. In view 
of (7.70) and the fact that T = Cr=, 1 can be viewed as a special case of (7.67). with 
ffl = 1, one can write l ( u )  as 

(7.74) 
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and by direct differentiation of (7.74) write Oe(u) as 

(observe that Wt = W t ( X t ,  u) is a function of u but Ht = H t ( X t )  is not). Observe also 
that above, OWt = Wt S t .  Higher-order partial derivatives with respect to parameters of 
interest can then be obtained from (7.75). Utilizing (7.74) and (7.75), one can estimate e(u) 
and Ve(u), for all u, as 

(7.76) 

and 

respectively, and similarly for higher-order derivatives. Notice again that in this case, 
%(u) = VF(u). The algorithm for estimating the gradient Ve(u) at different values of u 
using a single simulation run can be written as follows. 

Algorithm 7.4.1 (Vt(u) Estimation) 

1. Generate a random sample { X I , .  . . , XT}, T = Zcl r,, from g(x). 

2. Generate the outputpmcesses { H t }  and {VWt} = { W t S t } .  

3. Calculate o^$e(u)fmm (7.77). 

Confidence intervals (regions) for the sensitivities VkC(u), lc = 0,  1, utilizing the SF esti- 
mators Vkz(u), lc = 0,1, can be derived analogously to those for the standard regenerative 
estimator of Chapter 4 and are left as an exercise. 

H EXAMPLE 7.12 Waiting Time 

The waiting time process in a GI/G/l  queue is driven by sequences of interarrival 
times { A t }  and service times { St}  via the Lindley equation 

Ht = m a x ( H t p l  + St - A t ,  0}, t = 1 , 2 , .  . . (7.78) 

with Ho = 0; see (4.30) and Problem 5.3. Writing X t  = (St, A t ) ,  the {Xtl t = 
1 , 2 ,  . . .} are iid. The process { H t ,  t = 0,1, . . .} is a regenerative process, which 
regenerates every time Ht = 0. Let T > 0 denote the first such time, and let H denote 
the steady-state waiting time. We wish to estimate the steady-state performance 

Consider, for instance, the case where S - Exp(p), A - Exp(X), and S and A are 
independent. Thus, H is the steady-state waiting time in the M I M I 1  queue, and 
E [ H ]  = X/(p(p - A)) for p > A; see, for example, [5 ] .  Suppose we carry out the 
simulation using the service rate and wish to estimate e(p)  = E[H] for different 
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-3 -  

-3.5- 

values of ,u using the same simulation run. Let (S1, A l ) ,  . . . , (S,, A , )  denote the 
service and interarrival times in the first cycle, respectively. Then, for the first cycle 

{ 
I 

1 

P 

and Ht is as given in (7.78). From these, the sums cz=l HtWt,  cz=l W,, 
WtSt, and zl=, HtWtSt  can be computed. Repeating this for the subse- 

quent cycles, one can estimate [ ( p )  and Vl(,u) from (7.76) and (7.77), respectively. 
Figure 7.4 displays the estimates and true values for 1.5 < ,u < 5.5 using a single 
simulation run of N = lo5 cycles. The simulation was carried out under the service 
rate ,G = 2 and arrival rate X = 1. We see that both [ ( p )  and V' l (p , )  are estimated 
accurately over the whole range. Note that for p < 2 the confidence interval for @) 
grows rapidly wider. The estimation should not be extended much below p = 1.5, 
as the importance sampling will break down, resulting in unreliable estimates. 

st = st-1 + - - st, t = 1,2,. . . ,7 (So = 0) , 

-4 I 
1 2 3 4 5 6 

f i  

Figure 7.4 
as a function of p. 

Estimated and true values for the expected steady-state waiting time and its derivative 
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Although (7.76) and (7.77) were derived for the case where the {Xi} are iid, much of the 
theory can be readily modified to deal with the dependent case. As an example, consider 
the case where XI,  X 2 ,  . . . form an ergodic Markov chain and R is of the form 

(7.79) 
t = l  

where czI is the cost of going from state i to j and R represents the cost accrued in a cycle of 
length T .  Let P = ( p z J )  be the one-step transition matrix of the Markov chain. Following 
reasoning similar to that for (7.67) and defining H t  = C X ~ - ~ , X ~ ,  we see that 

- 
where P = (&) is another transition matrix, and 

is the likelihood ratio. The pdf of Xt is given by 

t 

k=I 

The score function can again be obtained by taking the derivative of the logarithm of the 
pdf. Since, &[TI = I E , [ ~ ~ = ,  Wt],  the long-run average cost [(P) = IEp[R]/&[T] can 
be estimated via (7.76) - and its derivatives by (7.77) - simultaneously for various P 
using a single simulation run under P. 

I 

1 EXAMPLE 7.13 Markov Chain: Example 4.8 (Continued) 

Consider again the two-state Markov chain with transition matrix P = ( p i j )  and cost 
matrix C given by 

and 

respectively, where p denotes the vector ( ~ ~ , p 2 ) ~ .  Our goal is to estimate [(p) 
and Vl (p )  using (7.76) and (7.77) for various p from a single simulation run under 
6 = (i, $ ) T .  Assume, as in Example 4.8, that starting from state 1, we obtain 
the sample trajectory ( Q , I C ~ , Q , .  . . ,210) = ( 1 , 2 , 2 , 2 , 1 , 2 , 1 , 1 , 2 , 2 , l ) , w h i c h  has 
four cycles with lengths T~ = 4, 7-2 = 2 ,  T~ = 1, 7 4  = 3 and corresponding 

in the first cycle is given by (7.79). We consider the cases (1 )  p = 6 = (i, i)' and 
(2) p = ( i ,  f)'. The transition matrices for the two cases are 

transition probabilities ( ~ 1 2 ,  ~ 2 2 ,  ~ 2 2 ,  2321); ( ~ 1 2 ,  ~ 2 1 ) ;  ( ~ 1 1 ) ;  ( ~ 1 2 , ~ 2 2 ,  ~ 2 1 ) .  Thecost 

- 
P =  (i !) and P =  (i i) . 
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Note that the first case pertains to the nominal Markov chain. 
In the first cycle, costs H11 = 1, H21 = 3, H31 = 3, and H41 = 2 are incurred. 

The likelihood ratios under case (2)  are W11 = = 8/5, Wz1 = LVIIF = 1, 
W31 = W 2 1 g  = and W41 = W 3 1 a  PZl = g, while in case (1) they are all 1. 
Next, we derive the score functions (in the first cycle) with respect to pl and p z .  Note 
that 

P Z Z  

f4(x4;p) =p12p;2p21 = (1 -P1)(1 - P 2 ) 2 P 2 .  

It follows that in case (2)  

5 
-lnfd(xq;p) = - - -- 
dPl 1 - P l  4 

- a -1 

and 
a -2 1 
- In f d ( x 4 ;  p) = - + - = -2 , 
8PZ 1 -P2 P2 

so that the score function at time t = 4 in the first cycle is given by s41 = (- 2, -2). 
Similarly, S31 = (-$, -4), Szl = ( - 2 ,  -2), and S11 = ( - 2 , O ) .  The quantities 
for the other cycles are derived in the same way, and the results are summarized in 
Table 7.3. 

Table 7.3 Summary of costs, likelihood ratios, and score functions. 

By substituting these values in (7.76) and (7.77), the reader can verify that @p) = 

1.8, F(p) =: 1.81, %(p) = (-0.52, -0.875),and G(p) = (0.22, -1.23). 

PROBLEMS 

7.1 Consider the unconstrained minimization program 

(7.80) 

where X - Ber(u) . 
a) Show that the stochastic counterpart of W ( u )  = 0 can be written (see (7.18)) as 

b 
UZ 

N 
h A 1 1  

71 N 
oqu) = oqu; ZJ) = -- c x, - - = 0 , 

t=l  

(7.81) 

where X I , .  . . , XN is a random sample from Ber(w). 
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b) Assume that the sample { O , l , O , O , l , O , O , l , l , l , O , l , O , l , l , O , l , O , l , l }  was 
generated from Ber(w = 1/2). Show that the optimal solution u* is estimated as 

7.2 Consider the unconstrained minimization program 

min!(u) = min{lEu[X] + b u } ,  u E (0.5,2.0) , (7.82) 

+ b = 0 can 

11 U 

1 where X - Exp(u). Show that the stochastic counterpart of Ve(u) = - 
be written (see (7.20)) as 

e-UXi (1 - u Xi) N 1 
N 

oqu; w )  = - 1 xi e-llX' + b = O ,  
i=l 

(7.83) 

where X I ,  . . . , X, is a random sample from Exp(w). 

7.3 Prove (7.25). 

7.4 Show that VkW(x; u,v)  = S ( k ) ( ~ ;  x) W(x; u, v) and hence prove (7.16). 

7.5 Let Xi - N ( u i ,  cr,"), i = 1, . . . , n be independent random variables. Suppose we 
are interested in sensitivities with respect to u = ( ~ 1 , .  . . , u,) only. Show that, for i = 
1. . . . . n. 

and 
[S(')(u; X)lZ = .;2(2, - .I) . 

7.6 
distributed according to the exponential family 

Let the components X , ,  i = 1,.  . . , n of a random vector X be independent, and 

ji(zi; ui) = ci(ui) ebl(ua)'*(s,) hi(x:i) , 

where b i ( u i ) ,  ti(zi) and hi(zi) are real-valued functions and ci(ui) is normalization con- 
stant. The corresponding pdf of X is given by 

f(x; u) = c(u) exp 1 bi(ui)ti(zi) h(x) , 
(a:] ) 

where u = CUT,. . . , uf), c(u) = ny=l ci(ui), and h(x) = ny=l hi(zi) . 
a) Show that Var,(HW) = 6 lE,[H2] - ! (u)~ ,  where w is determined by 

b) Show that 
bi(wi) = 2 b i ( ~ i )  - b i ( v i ) ,  i = I , .  . . ,n. 

EV[H2W2] = E"[W2] lE,[H2] . 

7.7 Consider the exponential pdf f(z; u) = uexp(-uz). Show that if H ( z )  is a mono- 
tonically increasing function, then the expected performancel(u) = lE,[H(X)] is a mono- 
tonically decreasing convex function of u € (0, M). 
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7.8 
function 

Let X - N(u., 02). Suppose that cr is known and fixed. For a given u, consider the 

C(v) = IEV[H2W2] . 

a) Show that if IE,[H2] < cc for all u E R, then L ( v )  is convex and continuous on 
R. Show further that if, additionally, IEu,[H2] > 0 for any u, then C(v) has a 
unique minimizer, v*, over R. 

b) Show that if H 2 ( z )  is monotonically increasing on R, then w* > u. 
7.9 Let X - N(u, 02). Suppose that u is known, and consider the parameterg. Note that 
the resulting exponential family is not of canonical form (A.9). However, parameterizing 
it by 8 = cr-2 transforms it into canonical form, with t ( 5 )  = -(x - 2 ~ ) ~ / 2  and c(6) = 
( 2 ~ )  -1/261/2. 

a) Show that 

provided that 0 < q < 26. 
b) Show that, for a given 0, the function 

L(7)  = IE,[H2W2] 

has a unique minimizer, q*, on the interval (0,28), provided that the expectation, 
IE, [ H 2 ] ,  is finite for all 7 E (0,20) and does not tend to 0 as q approaches 0 or 
28. (Notice that this implies that the corresponding optimal value, cr* = ~ * - l / ~ ,  

of the reference parameter, 0, is also unique.) 
c) Show that if H 2 ( z )  is strictly convex on R, then q* < 0. (Notice that this implies 

that cr* > a.) 
7.10 Consider the performance 

H(X17 x2;"3,"4)  = min(max(X1, w), max(X2, ~ 4 ) )  , 

where X1 and X2 havecontinuousdensities f(z1; u1) and f(z2; u2), respectively. If we let 
Y1 = max( X I ,  u3) and Y2 = max( X2, uq) and write the performance as min(Y1 Yz),  then 
Y1 and Y2 would take values u3 and u4 with nonzero probability. Hence the random vector 
Y = (Yl, Y2) would not have a density function at point (u3,11,4), since its distribution is a 
mixture of continuous and discrete ones. Consequently, the push-out method would fail in 
its current form. To overcome this difficulty, we carry out a transformation. We first write 

and then replace X = (XI,  X 2 )  by the random vector X = ( 2 1 , 2 2 ) ,  where 

and 

Prove that the density of the random vector ( 2 1 , 2 2 )  is differentiable with respect to the 
variables (u3,u4), provided that both 21 and 2 2  are greater than 1. 
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7.1 1 Delta method. Let X = ( X I ,  . . . , X,) and Y = (Y1, . . . , Y,) be random (column) 
vectors, with Y = g ( X )  for some mapping g from Rn to R". Let CX and C y  denote the 
corresponding covariance matrices. Suppose that X is close to its mean p. A first-order 
Taylor expansion of g around p gives 

y = P ( P )  + J , ( g ) ( X  - 

where J, (g)  is the matrix of Jacobi of g (the matrix whose (z,j)-th entry is the partial 
derivative agi/azj) evaluated at p. Show that, as a consequence, 

This is called the delta method in statistics. 

Further Reading 

The S F  method in the simulation context appears to have been discovered and rediscovered 
independently, starting in the late 1960s. The earlier work on S F  appeared in Aleksandrov, 
Sysoyev, and Shemeneva [ l ]  in 1968 and Rubinstein [14] in 1969. Motivated by the 
pioneering paper of Ho, Eyler, and Chien [6] on infinitesimal perturbation analysis (IPA) 
in 1979, the S F  method was rediscovered at the end of the 1980s by Glynn [4] in 1990 and 
independently in 1989 by Reiman and Weiss [ 121, who called it the likelihoodratio method. 
Since then, both the IPA and S F  methods have evolved over the past decade or so and have 
now reached maturity; see Glasserman [3], Pflug [ l l ] ,  Rubinstein and Shapiro [18], and 
Spa11 [20]. 

To the best of our knowledge, the stochastic counterpart method in the simulation context 
was first suggested by Rubinstein in his PhD thesis [14]. It was applied there to estimate 
the optimal parameters in a complex simulation-based optimization model. It was shown 
numerically that the off-line stochastic counterpart method produces better estimates than the 
standard on-line stochastic approximation. For some later work on the stochastic counterpart 
method and stochastic approximation, see [ 151. Alexander Shapiro should be credited 
for developing theoretical foundations for stochastic programs and, in particular, for the 
stochastic counterpart method. For relevant references, see Shapiro's elegant paper [ 191 
and also [ 17, 181. As mentioned, Geyer and Thompson [2] independently discovered the 
stochastic counterpart method in the early 199Os, and used it to make statistical inference 
in a particular unconstrained setting. 
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CHAPTER 8 

THE CROSS-ENTROPY METHOD 

8.1 INTRODUCTION 

The cross-entropy (CE) method [3 11 is a relatively new Monte Carlo technique for both 
estimation and optimization. In the estimation setting, the CE method provides an adaptive 
way to find the optimal importance sampling distribution for quite general problems. By 
formulating an optimization problem as an estimation problem, the CE method becomes a 
general and powerful stochastic search algorithm. The method is based on a simple iterative 
procedure where each iteration contains two phases: (a) generate a random data sample 
(trajectories, vectors, etc.) according to a specified mechanism; (b) update the parameters 
of the random mechanism on the basis of the data in order to produce a better sample in the 
next iteration. 

The CE method has its origins in an adaptive algorithm for rare-event estimation based 
on varianceminimization (VM) [26]. This procedure was soon modified [27] to an adaptive 
algorithm for both rare-event estimation and combinatorial optimization, where the original 
VM program was replaced by a similar CE minimization program. In this chapter we present 
a general introduction to the CE method. For a comprehensive treatment we refer to [3 11. 

The rest of this chapter is organized as follows. Section 8.2 presents a general CE 
algorithm for the estimation of rare-event probabilities, while Section 8.3 introduces a slight 
modification of this algorithm for solving combinatorial optimization problems. We discuss 
applications of the CE method to several such problems, such as the max-cut problem and 
the TSP, and provide supportive numerical results on the performance of the algorithm. 

Simulation and the Monte Carlo Method Second Edition. By R.Y. Rubinstein and D. P. Kroese 
Copyright @ 2007 John Wiley & Sons, Inc. 
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Finally, in Sections 8.7 and 8.8 we show how the CE method can deal with continuous and 
noisy optimization problems, respectively. 

8.2 ESTIMATION OF RARE-EVENT PROBABILITIES 

In this section we apply the CE method in the context of efficient estimation of small 
probabilities. Consider, in particular, the estimation of 

e = PU(S(X) 2 7) = Eu [ q s ( X ) > y } l  (8.1) 

for some fixed level y. Here S(X) is the sample performance, X is a random vector with 
pdf j(.; u) belonging to some parametric family {f( . ;v),v E "Y}, and {S(X) y} is 
assumed to be a rare event. We can estimate l using the likelihood ratio estimator (see also 

. N  
(5.59)) 

where XI , .  .. , X N  is a random sample from f(x;v)  and w(xk;u ,v)  = 
f(Xk; u)/f(Xk; v) is the likelihood ratio. 

EXAMPLE 8.1 Stochastic Shortest Path 

Let us return to Example 5.14 (see also Example 5.1). where the objective is to 
efficiently estimate the probability e that the shortest path from node A to node B in 
the network of Figure 8.1 has a length of at least y. The random lengths X I  . . . , X5 
of the links are assumed to be independent and exponentially distributed with means 
211, . . . , u,5, respectively. 

Figure 8.1 Shortest path from A to B. 

Defining X = ( X I , .  . . , X s ) ,  u = ( 2 ~ 1 , .  . . us) and 

S(X) = min{X1+ X4,  XI + X3 + X 5 ,  X2 + X5,  X2 + X3 + X 4 } ,  

the problem is cast in the framework of (8.1). As explained in Example 5.14, we can 
estimate (8.1) via (8.2) by drawing X I ,  . . . , X5 independently from exponential dis- 
tributions that are possibly dferent from the original ones. That is, X i  N Exp(vzrl) 
instead of X i  N Exp(u,'), i = 1,. . . , 5 .  The corresponding likelihood ratio was 
given in (5.73). 
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The challenging problem is how to select a vector v = (v1, . . . ,w5) that gives the 
most accurate estimate of e for a given simulation effort. In the toy Example 5.14, 
this was achieved by first choosing the trial vector w equal to u and then applying the 
CE updating formula (5.69), possibly iterating the latter. This approach was possible 
because the event { S(x) 2 y} was not rare. However, for the current problem (5.69) 
cannot be applied directly, since for rare events it returns, with high probability, 
the indeterminate expression 1. To overcome this difficulty, we will use a different 
approach to selecting a good v by adopting a two-stage procedure where both the 
level y and the reference parameters v are updated. One of the strengths of the CE 
method for rare-event simulation is that it provides a fast way to estimate accurately 
the optimal parameter vector v*. 

Returning to the general situation, we have seen in Section 5.6 that for estimation prob- 
lems of the form (8.1) the ideal (zero variance) importance sampling density is given by 

which is the conditional pdf of X given S ( X )  2 y. The idea behind the CE method is 
to get as close as possible to the optimal importance sampling distribution by using the 
Kullback-Leibler CE distance as a measure of closeness. Using a parametric class of 
densities { f ( x ;  v ) , v  E Y } ,  this means (see (5.61)) that the optimal reference parameter 
v* is given by 

V* = argmaxEu[Z{s(x)aY} l n f ( X ; v ) l  . (8.3) 
V E Y  

We can, in principle, estimate V* as 

with X I ,  . . . , XN N f(.; u) - that is, using the stochastic counterpart of (8.3). However, 
as mentioned in Example 8.1, this is void of meaning if { S ( X )  2 y} is a rare event under 
f(.; u), since then most likely all indicators in the sum above will be zero. 

To circumvent this problem we shall use a multilevel approach where we generate a 
sequence of reference parameters { vt ,  t 2 0) and a sequence of levels {yt, t 3 1) while 
iterating in both yt and vt. Our ultimate goal is to have vt close to v* after some number 
of iterations and to use vt in the importance sampling density f(.; v t )  to estimate t .  

We start with vo = u. Let e be a not too small number, say lo-' < Q < lo-'. In the 
first iteration, we choose v1 to be the optimal parameter for estimating P U ( S ( X )  2 TI), 
where y1 is the (1 - Q)-quantile of S ( X ) .  That is, y1 is the largest real number for which 

Thus, if we simulate under u, then level y1 is reached with a reasonably high probability of 
around e. This enables us to estimate both y1 and v1 via Monte Carlo simulation. Namely, 
we can estimate y1 from a random sample X I ,  . . . , XN from f(.; u) as follows. Calculate 
the performances S(X,)  for all i, and order them from smallest to largest: S(l) < . . . < 
S(N) .  Then y1 is estimated via the sample (1 - Q)-quantile = S(r(l-e)~l) ,  where 
[a1 denotes the smallest integer larger than or equal to a (the so-called ceiling of a). The 
reference parametervl can be estimated via (8.4), replacing y with the estimate of y1. Note 
that we can use here the same sample for estimating both v1 and 71. This means that v1 is 
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estimated on the basis of the [e  N1 best samples, that is, the samples Xi for which S(Xi) 
is greater than or equal to TI. These form the elite samples in the first iteration; let N e  
denote the number of elite samples. 

In the subsequent iterations we repeat these steps. Thus, we have the following two 
updating phases, starting from vo = GO = u: 

1. Adaptive updating of -yt. For a fixed vtPl,  let yt be the (1 - Q)-quantile of S(X) 
under ~ ~ - 1 .  To estimate - y t ,  draw a random sample XI, . . . , XN from f(.; V t - l )  and 
evaluate the sample (1 - Q)-quantile Tt .  

2. Adaptive updating of vt. For fixed yt and vt - 1, derive vt as 

vt = argmax%-,  [I~s(x)~~~~W(X;U,V~-~)~~~(X;~)] . (8.5) 

The stochastic counterpart of (8.5) is as follows: for fixed Tt and G t - l ,  derive G t  as 
the solution 

V E Y  

where &, is the set of elite samples in the t-th iteration, that is, the samples Xk for 
which S(Xk) 2 Tt.  

The procedure terminates when at some iteration T a level TT is reached that is at least 
y and thus the original value of y can be used without getting too few samples. We then 
reset TT to y, reset the corresponding elite set, and deliver the final reference parameter G * ,  
again using (8.6). This C* is then used in (8.2) to estimate C. 

The resulting CE algorithm for rare-event probability estimation can thus be written as 
follows. 

Algorithm 8.2.1 (Main CE Algorithm for Rare-Event Estimation) 

1. Define GO = u. Let N e  = [(l - e ) N ] .  Set t = 1 (iteration counter). 

2. Generate a random sample XI, . . . , XN according to thepdf f(.; G t - l ) .  Calculate 
the perjiormances S(X,) for all i, and order them from smallest to largest, S(1) < 
. . . < S ( N ) .  Let Tt be the sample (1 - e)-quantile ofperjiormances: yt = S ( N e ) .  r f  
qt > y, reset Ft to y. 

3. Use the same sample X1, . . . , XN to solve the stochasticprogram (8.6). 

4. If Tl < y, set t = t + 1 and reiterate from Step 2. Otherwise, proceed with Step 5. 

5. Let T be the final iteration counter: Generate a sample X I ,  . . . , XN, according to 
thepdf f(.; VT) andestimate C via (8.2), 

Remark 8.2.1 In typical applications the sample size N in Steps 2 4 c a n  be chosen smaller 
than the final sample size N1 in Step 5. 

Note that Algorithm 8.2.1 breaks down the complex problem of estimating the very small 
probability C into a sequence of simple problems, generating a sequence of pairs { (Tt ,  V t ) } ,  
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depending on e, which is called the rarityparameter. Convergence of Algorithm 8.2.1 is 
discussed in [3 11. Other convergence proofs for the CE method may be found in [21] and 
[61. 

Remark 8.2.2 (Maximum Likelihood Estimator) Optimization problems of the form 
(8.6) appear frequently in statistics. In particular, if the W term is omitted - which 
will turn out to be important in CE optimization - one can also write (8.6) as 

A vt = argmax I-J f ( ~ k ; v )  , 
X k E E t  

where the product is the joint density of the elite samples. Consequently, ?t is chosen 
such that the joint density of the elite samples is maximized. Viewed as a function of the 
parameter v, rather than of the data { & t } ,  this joint density is called the likelihood. In other 
words, Gt is the maximum likelihood estimator (it maximizes the likelihood) of v based on 
the elite samples. When the W term is present, the form of the updating formula remains 
similar. Recall from Section 5.6 that for exponential families the updating rules for ?t can 
be obtained analytically; see also Section A.3 of the Appendix. 

To gain a better understanding of the CE algorithm, we also present its deterministic 
version. 

Algorithm 8.2.2 (Deterministic Version of the CE Algorithm) 

I .  Dejine vg = u. Set t = 1 

2. Calculate -yt as 

-yt = max { s  : P v t - , ( S ( X )  > 3) > e} . (8.7) 

If-yt  > 7, reset -yt to y. 

3. Calculate vt (see (8.5)) as 

4. rfrt = y stop; otherwise, set t = t + 1 and repeatfrom Step 2. 

Note that, when compared with Algorithm 8.2.1, Step 5 is redundant in Algorithm 8.2.2. 

number of toy examples. 
To provide further insight into Algorithm 8.2.1, we shall follow it step by step in a 

EXAMPLE 8.2 Exponential Distribution 

Let us revisit Examples 5.8,5.10, and 5.12, where the goal was to estimate, via Monte 
Carlo simulation, the probability e = P,(X 2 y),  with X - Exp(u-'). Suppose 
that y is large in comparison with u, so that C = e-YIu is a rare-event probability. 
The updating formula for Zt in (8.6) follows from the optimization of 
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where wk = e-Xk(u-l-y-')v/u. To find the maximum of the right-hand side, we 
take derivatives and equate the result to 0: 

Solving this for v yields Gt. Thus, 

In other words, Gt is simply the sample mean of the elite samples weighted by the 
likelihood ratios. Note that without the weights { w k }  we would simply have the 
maximum likelihood estimator of v for the Exp(v-') distribution based on the elite 
samples in accordance with Remark 8.2.2. Note also that the updating formula (8.9) 
follows directly from (5.69). Similarly, the deterministic updating formula (8.8) gives 

where y t  is the (1 - p)-quantileof the Exp(~;-'~) distribution. Thus, -yt = -1.~t-1 In p. 
Assume for concreteness that u = 1 and y = 32, which corresponds to e = 

1.2710-14. Table 8.1 presents the evolution of Tt and Gt for p = 0.05 using sample 
size N = 1000. Note that iteration t = 0 corresponds to the original exponential 
pdf with expectation u = 1, while iterations t = 1 , 2 , 3  correspond to exponential 
pdfs with expectations Gt,  t = 1 , 2 , 3 ,  respectively. Figure 8.2 illustrates the iterative 
procedure. We see that Algorithm 8.2.1 requires three iterations to reach the final 
level 7 3  = 32. In the third iteration the lowest value of the elite samples, S(N ' ) ,  was 
in fact greater than 32, so that in the final Step 2 of the algorithm we take y3 = y = 32 
instead. The corresponding reference parameter G3 was found to be 32.82. Note that 
both parameters Tt and Gt increase gradually, each time "blowing up" the tail of the 
exponential pdf. 

The final step of Algorithm 8.2.1 now invokes the likelihood ratio estimator (8.2) 
to estimate e, using a sample size N1 that is typically larger than N .  

Table 8.1 The evolution of Tt and Gt for Q = 0.05 with y = 32, using N = 1000 samples. 

t 7t Gt 

0 -  1 
1 2.91 3.86 
2 11.47 12.46 
3 32 32.82 
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Figure 8.2 A three-level realization of Algorithm 8.2.1. Each shaded region has area Q. 

EXAMPLE 8.3 Degeneracy 

When y is the maximum of S(x), no “overshooting” of y in Algorithm 8.2.1 occurs 
and therefore yt does not need to be reset. In such cases the sampling pdf may 
degenerate toward the atomic pdf that has all its mass concentrated at the points x 
where S(x) is maximal. As an example, suppose we use a Beta(v, l ) ,  v 2 1 family 
of importance sampling distributions, with nominal parameter u = 1 (corresponding 
to the uniform distribution), and take S ( X )  = X and y = 1. We find the updating 
formula for v from the optimization of 

with wk = l/(vX;-’). Hence, 

Table 8.2 and Figure 8.3 show the evolution of parameters in the CE algorithm using 
Q = 0.8 and N = 1000. We see that Tt rapidly increases to y and that the sampling 
pdf degenerates to the atomic density with mass at 1. 

Table 8.2 
using N = 1000 samples. 

The evolution of Tt and Gt for the Beta(v, 1)  example, with Q = 0.8 and 7 = 1, 

t Tt I’ t  t ?t U t  

0 -  1 5 0.896 31.2 
1 0.207 1.7 6 0.949 74.3 
2 0.360 3.1 7 0.979 168.4 
3 0.596 6.4 8 0.990 396.5 
4 0.784 14.5 9 0.996 907.7 
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Figure 8.3 Degeneracy of the sampling distribution. 

EXAMPLE 8.4 Coin Flipping 

Consider the experiment where we flip n fair coins. We can describe this experiment 
via n independent Bernoulli random variables, X I ,  . . . , X, ,  each with success pa- 
rameter 1/2. We write X = ( X I , .  . . , X n )  - Ber(u), where u = (1/2,. . . , l / 2 )  
is the vector of success probabilities. Note that the range of X (the set of possible 
values it can take) contains 2" elements. Suppose we are interested in estimating 
e = Pu(S(X) 2 y), with S ( X )  = EL=, xk. We want to employ importance sam- 
pling using X - Ber(p) for a possibly different parameter vector p = (PI , .  . . , p , ) .  
Consider two cases: (a) y = (n  + 1)/2 (with n odd) and (b) y = n. It is readily 
seen that for cases (a) and (b) the optimal importance sampling parameter vector is 
p* = (1/2, .  . . ,1 /2)  and p* = (1 , .  . . , l ) ,  respectively. The corresponding prob- 
abilities are e = 4 and C = &, respectively. Note that in the first case C is not a 
rare-event probability, but i t  is so for the second case (provided that n is large). Note 
also that in the second case Ber(p*) corresponds to a degenerated distribution that 
places all probability mass at the point (1 ,1 , .  . . , 1 ) .  

Since { Ber(p)} forms an exponential family that is parameterized by the mean, it 
immediately follows from (5.69) that the updating formula for p in Algorithm 8.2.1 
at the t-th iteration coincides with (8.9) and is given by 

, i = 1, . . . ,  n ,  
Exkc&, wk X k i  

Pt,;  = 
CXk&t  wk 

(8.10) 

where Xki is the i-th component of the k-th sample vector xk - Ber(&- I) ,  and wk 
is the corresponding likelihood ratio: 

n 

i=l 

with qi = po,i/&l,i and ~i = (1 - po,,)/(l - F t - l , i ) ,  i = 1 , .  . . , n. Thus, the i-th 
probability is updated as a weighted average of the number of 1 s in the i-th position 
over all vectors in the elite sample. 

As we shall see below, this simple coin flipping example will shed light on how 
rare-events estimation is connected with combinatorial optimization. 
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Remark 8.2.3 It is important to note that if we employ the deterministic CE algorithm 
8.2.2 to any rare-event-type problem where the underlying distributions have finite supports 
withoutfiing y in advance, it will iterate until it reaches some y, denoted as y, (not 
necessarily the true optimal y*), and then stop. The corresponding importance sampling 
pdf f(x;  v,) will be degenerated. For the above coin flipping example we will typically 
have in case (b) that y* = y* = n. The main Algorithm 8.2.1 behaves similarly, but in a 
stochastic rather than a deterministic sense. More precisely, for pdfs with finite supports and 
y not fixed in advance, it will generate a tuple (TT, G T )  with f(x;  G T )  corresponding again 
typically to a degenerate pdf. This property of Algorithms 8.2.2 and 8.2.1 will be of crucial 
importance when dealing with combinatorial optimization problems in the next section. As 
mentioned, a combinatorial optimization problem can be viewed as a rare-event estimation 
problem in the sense that its optimal importance sampling pdf f(x; v*)  is a degenerated 
one and coincides with the one generated by the deterministic rare-event Algorithm 8.2.2, 
provided that it keeps iterating in y without fixing it in advance. 

In the next example, we illustrate the behavior of Algorithm 8.2.1 when applied to a 
typical static simulation problem of estimating l = P(S(X) 2 7).  Note that the likelihood 
ratio estimator Fof e in (8.2) is of the form i= N-' C;=, Zk. We measure the efficiency 
of the estimator by its relative error (RE), which (recall (4.10)) is defined as 

and which is estimated by S / ( ? f i ) ,  with 

N 

k = l  

being the sample variance of the { Zi}. Assuming asymptotic normality of the estimator, the 
confidence intervals now follow in a standard way. For example, a 95% relative confidence 
interval for l is given by 

F3z 1.96 ZRE . 

EXAMPLE 8.5 Stochastic Shortest Path: Example 8.1 (Continued) 

Consider again the stochastic shortest path graph of Figure 8.1. Let us take the same 
nominal parameter vector u as in Example 5.14, that is, u = (1, 1,0.3,0.2,0.1), and 
estimate the probability e that the minimum path length is greater than y = 6. Note 
that in Example 5.14 y = 1.5 is used, which gives rise to an event that is not rare. 

Crude Monte Carlo (CMC), with 10' samples - a very large simulation effort - 
gave an estimate 8.01 . 

To apply Algorithm 8.2.1 to this problem, we need to establish the updating rule 
for the reference parameter v = (ul, . . . , w5). Since the components X1 , . . . , X5 are 
independent and form an exponential family parameterized by the mean, this updating 
formula follows immediately from (5.69), that is, 

with an estimated relative error of 0.035. 

with W(X; u, v) given in (5.73). 
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A 

Yt 

1.1656 
2.1545 
3.1116 
4.6290 
6.0000 

We take in all our experiments with Algorithm 8.2.1 the rarity parameter e = 0.1, 
the sample size for Steps 2 4  of the algorithm N = lo3, and for the final sample size 
N1 = lo5. Table 8.3 displays the results of Steps 1 4  of the CE algorithm. We see 
that after five iterations level y = 6 is reached. 

" 1  

1 .OOOO 1 .OOOO 0.3000 0.2000 0.1000 
1.9805 2.0078 0.3256 0.2487 0.1249 
2.8575 3.0006 0.2554 0.2122 0.0908 
3.7813 4.0858 0.3017 0.1963 0.0764 
5.2803 5.6542 0.2510 0.1951 0.0588 
6.7950 6.7094 0.2882 0.1512 0.1360 

t 
0 
1 
2 
3 
4 
5 

- 

Using the 
0.2882, 
with an 

- estimated optimal parameter vector of 6 5  = (6.7950,6.7094, 
0.1512,0.1360), Step 5 of the CE algorithm gave an estimate of 7.85. 
estimated relative error of 0.035 - the same as for the CMC method with 

lo8 samples. However, whereas the CMC method required more than an hour of 
computation time, the CE algorithm was finished in only one second, using a Matlab 
implementation on a 1500 MHz computer. We see that with a minimal amount of 
work, we have achieved a dramatic reduction of the simulation effort. 

Table 8.4 presents the performance of Algorithm 8.2.1 for the above stochastic 
shortest path model, where instead of the exponential random variables we used 
Weib(ai, X i )  random variables, with ai = 0.2 and X i  = u;', i = 1, .  . . ,5,  where 
the {u,}  are the same as before, that is, u = (1,1,0.3,0.2,0.1). 

Table 8.4 
and a = 0.2. The estimated probability is f! = 3.30. 

The evolution of Gt for estimagng the optimal parameter v* with the TLR method 
RE = 0.03. 

3.633 2.0367 2.1279 0.9389 1.3834 1.4624 
100.0 3.2690 3.3981 1.1454 1.3674 1.2939 
805.3 4.8085 4.7221 0.9660 1.1143 0.9244 

4 5720 6.6789 6.7252 0.6979 0.9749 1.0118 
5 10000 7.5876 7.8139 1.0720 1.3152 1.2252 

The Weibull distribution with shape parameter a less than 1 is an example of a 
heavy-fuileddistribution. We use the TLR method (see Section 5.8) to estimate e for 
y = ~O,OOO. Specifically, we first write (see (5.98)) xk = u k ~ : ' ~ ,  with Z k  - Exp( l ) ,  
and then use importance sampling on the { Z k } ,  changing the mean of 21, from 1 to 
v k ,  k = 1 , .  . . ,5. The corresponding updating formula is again of the form (8.1 I),  
namely, 

- 
A cf='=, I { g ( z , ) a y t ) W ( Z k ;  1, 6L-1) z k i  

c,"=, 1 { S p , ) 2 T t ) W ( Z k ;  l > G t - l )  

V t , i  = - , i = 1, . . . ,  5 ,  
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with w ( Z ;  1, v) the likelihood ratio, and s(Z) = S(X). Note that the “nominal” 
parameter here is 1 = (1, 1,1, 1, l), rather than (1,1,0.3,0.2,0.1). Instead of using 
the TLR method, one could use the standard CE method here, where the components 
are sampled from {Weib(a, vt-’)} and the {vi} are updated adaptively. One would 
obtain results similar (estimate and relative error) to those for the TLR case. The 
TLR is a convenient and quite general tool for importance sampling simulation, but 
it does not provide additional variance reduction; see also Exercises 8.5 and 8.6. 

8.2.1 The Root-Finding Problem 

In many applications one needs to estimate, for given C, the root, y, of the nonlinear equation 

PU(S(X) 2 7 )  = hI[l{S(X)>-/}l  = C (8.12) 

rather than estimate C itself. We call such a problem a root-finding problem. 
An estimate of y in (8.12) based on the sample equivalent of IEU[l~~(x)~,)]  can be 

obtained, for example, via stochastic approximation; see Chapter 7 and [32]. Alternatively, 
one can obtain y using the CE method. The aim is to find a good trial vector GT such that 
y can be estimated as the smallest number ;3 such that 

w(xk; u, G*) 6 e . (8.13) 
1 N1 

- c TtS(Xk)>3 
N1 k = l  

In particular our main Algorithm 8.2.1 can be modified as follows. 

Algorithm 8.2.3 (Root-Finding Algorithm) 

1. Define Go = u, N e  = [(l - e)N1. Set t = 1. 

2. Generate a random sample X1 , . . . , XN from the density f (.; Gt- l ) .  

3. Calculate the performances S(Xl), . . . , ~ ( X N ) .  Order the performances from 
smallest to largest: S(1) < . . . < S ( N ) .  Let ;3t = S ( p ) .  

4. Calculate6 = max{e, + c,”==, I ~ S ( X ~ ) Z ~ ~ } W ( X ~ ; U , G ~ - ~ ) } .  

5.  Determine Gt via (8.6) using the same sample X I ,  . . . , XN. 

6. I f C t  = C, proceed to Step 7; otherwise, let t = t + 1 and reiterate from Step 2. 

7. Estimate y via (8.13) using a sample XI,  . . . , XN, - f (.; GT), where T is thejnal 

A 

iteration number: 

8.2.2 

Here we show how the screening method, introduced in Section 5.9, works for estimating 
rare-event probabilities of the form 

The Screening Method for Rare Events 

e = PU(S(X) 2 7 )  = EU[I{S(X)>-/}I 1 

where we assume, as in Section 5.9, that the components of X are independent, that each 
component is distributed according to a one-dimensional exponential family parameterized 
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by the mean, and that S(x) (and hence H ( x )  = I { s ( x ) 2 7 } )  is monotonically increasing 
in each component of x. In particular, we shall present a modification of the two-stage 
Algorithm 5.9.1. 

As in Algorithm 5.9.1, the main idea of the first stage of our modified algorithm is to 
identify the bottleneck parameters without involving the likelihoodratio. One might wonder 
how this could be possible given the fact that the estimation of the rare-event probability L 
is essentially based on likelihood ratios. The trick is to execute the first stage (the screening 
part) by replacing y with some yo such that = PU(S(X) 2 yo) is not a rare-event 
probability, say < t o  < lo-'. As soon as yo is determined, the execution of the first 
stage is similar to the one in Algorithm 5.9.1. It reduces to finding the estimator, say 30, 
of the optimal parameter vector v; obtained from (8.4), where y is replaced by yo. Note 
that (8.4) does not contain the likelihood ratio term W(X; u, w). It is important to note 
again that the components of v; are at least as large as the corresponding elements of u, and 
thus we can classify the bottleneck and nonbottleneck parameters according to the relative 
perturbation - 

i;, - ui , i = l  , . . . ,  n ,  6 .  - - 
Ui 

1 -  

which is the core of the screening algorithm. 

5.9.1 suitable for rare events. We use the same notation as in Section 5.9.1. 
Below we present the modified version of the two-stage screening CE-SCR Algorithm 

Algorithm 8.2.4 (Two-Stage Screening CE-SCR Algorithm) 

I .  Initialize the set of bottleneck elements to Bo = { 1, . . . , n}. Set t = 1 

2. Generate a sample XI, . . . , XN fmm f (x; u) and compute 90, the (1 - e)- sample 
quantile of the sample performances { S(Xi)}. 

3. Generate a different sample XI, . . . , XN from f (x; u) and deliver the CE solution 
of the stochastic program (5.107)3 with y = yo. Denote the solution by Gt = 
( G t l , .  . . , GLn). Note that ̂ vt is an n-dimensionalparameter vector 

4. Calculate the relative perturbation for each element Gt, , i = 1, . . . , n as 

(8.14) 

5. I f 6 t i  < 6,  where 6 is some threshold value, say 6 = 0.1 (note that a negative bti 
automatically satisjies 6t,  < 6). set Gtl = ui, that is, identzh the a-th element of the 
vector v as a nonbottleneckparameter: Otherwise, identrfV it as a bottleneck one. 
Let Rt be the set of bottleneck elements at iteration t. 

6. Repeat Steps 3-5 several times, say d times, increasing each time t by I and updating 
the set Bt. Note that the sequence of sets Bt , t = 1, . . . , d is nonincreasing. 

7. Apply the standard CE algorithm to estimate the optimal parameter vector v ~ ,  with 
B = Bd. Deliver (S. 106), that is, 

. N  

as the resulting estimator of the rare-eventpmbability e. 
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8.2.2. I Numerical Results Next, we present numerical studies with Algorithm 8.2.4 
for the m x n bridge system in Figure 5.5 on page 156. We are interested in estimating the 
rare-event probability C = P(S(X) 2 y) that the length S(X) of the shortest path through 
the graph is greater than or equal to y, where 

S(X) = min{ Y11 + . . . + Y l n , .  . . , Y m l  + . . . + Ymn) 

and the Y,3 are defined in (5.109). Note that the operator “max” in (5.1 10) is replaced by 
“min” here. The random variables X y k  are assumed to be Exp(ulJk) distributed. As in 
the numerical example in Section 5.9.1, it is important to realize that the {Xyk} are not 
parameterized by the mean, and that one needs to take instead 1 / U , J k  and 1/i& to compare 
the relative perturbations as described above. For the same reason, the parameter values 
corresponding to the bottleneckelements should be smaller than those for the nonbottleneck 
ones. As in Section 5.9, we purposely select (in advance) some elements of our model to 
be bottlenecks. 

Table 8.5 presents the performance of Algorithm 8.2.4 for the 2 x 2 model with eight 
bottlenecks, using b = 0.1, y = 6 and the sample sizes N = 50,000 and N1 = 500,000. In 
particular, we set thebottleneckparameters ~ 1 1 1 ,  ~ 1 1 2 ,  21121, 21122, 21211, ~ 2 1 2 ,  21221, ~ 2 2 2  

to 1 and the remaining 12 elements to 4. 

Table 8.5 Performance of Algorithm 8.2.4 for the 2 x 2 model. We set 6 = 0.1, y = 6, N = 
50,000, N1 = 500,000. 

CE VM CE-SCR VM-SCR 

Mean e  ̂ 2.92E-8 2.96E-8 2.88E-8 2.81E-8 
Max e^ 3.93E-8 3.69E-8 3.56E-8 3.29E-8 
Min 2 2.46E-8 2.65E-8 2.54E-8 2.45E-8 
RE 0.166 0.102 0.109 0.077 
CPU 6.03 9.3 1 6.56 9.12 

From the results of Table 8.5 it follows that, for this relatively small model, both CE 
and VM perform similarly to their screening counterparts. We will see further on that as 
the complexity of the model increases, VM-SCR outperforms its three alternatives and, in 
particular, CE-SCR. 

Table 8.6 presents the typical dynamics for detecting the bottleneck parameters at the 
first stage of Algorithm 8.2.4 for the above 2 x 2 model with 20 parameters, 8 of which 
are bottlenecks. Similar to Table 5.5, in Table 8.6 the 0 s  and 1s indicate which parameters 
are detected as nonbottleneck and bottleneck ones, respectively, and t denotes the iteration 
number at the first stage of the algorithm. 
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Table 8.6 
Algorithm 8.2.4. 

Qpical dynamics for detecting the bottleneck parameters at the first stage of 

t 21111 21112 21113 21114 21115 21121 21122 '(1123 21124 21125 

0 1  1 1 1 1 1 1 1 1 1 
1 1  1 1 0 0  1 1 1 0 0  
2 1  1 0 0 0  1 1 0 0 0  
3 1  1 0 0 0  1 1 0 0 0  
4 1  1 0 0 0  1 1 0 0 0  
5 1  1 0 0 0  1 1 0 0 0  

t 21211 21212 21213 '11214 21215 '11221 21222 21223 21224 21225 

0 1  1 1 1 1 1 1 1 1 1 
1 1  1 1 0 0  1 1 0 1 1 
2 1  1 1 0 0  1 1 0 1 1 
3 1  1 0 0 0  1 1 0 0 0  
4 1  1 0 0 0  1 1 0 0 0  
5 1  1 0 0 0  1 1 0 0 0  

It is readily seen that after the first iteration we have 13 bottleneck parameters and after 
the second one 11 bottleneck parameters; after the third iteration the process stabilizes, 
delivering the 8 true bottleneck parameters. 

Table 8.7 presents a typical evolution of the sequence { ( y t ,  G t ) }  for the elements of the 
above 2 x 2 model for the VM and VM-SCR methods. We see in this table that the bottleneck 
elements decrease more than three times, while the nonbottleneck elements fluctuate around 
their nominal values 4. 

Table 8.7 Typical evolution of the sequence {Gt} for the VM and VM-SCR methods. 

VM VM-SCR 
A 

t 5111 v112 5113 vll4 5115 vlll 5112 v113 u114 5115 

0 1.000 1.000 4.000 4.000 4.000 1.000 1.000 4 4 4 
1 0.759 0.771 3.944 3.719 3.839 0.760 0.771 4 4 4 
2 0.635 0.613 3.940 3.681 3.734 0.638 0.605 4 4 4 
3 0.524 0.517 4.060 3.297 3.608 0.506 0.491 4 4 4 
4 0.443 0.415 3.370 3.353 3.909 0.486 0.447 4 4 4 
5 0.334 0.332 3.689 3.965 4.250 0.402 0.371 4 4 4 
6 0.378 0.365 3.827 3.167 4.188 0.348 0.317 4 4 4 
7 0.357 0.358 3.881 4.235 4.929 0.375 0.347 4 4 4 
8 0.285 0.271 4.011 2.982 4.194 0.285 0.298 4 4 4 
9 0.287 0.301 3.249 2.879 3.409 0.288 0.254 4 4 4 

We conclude with a larger model, namely a 3 x 10 model, in which u111,u112. 
21211,21212,21311 and '11312 are chosen as bottleneck parameters and are set to 1, while the 
remaining parameters are set to 4. Table 8.8 presents the performance of Algorithm 8.2.4 
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for this model using 6 = 0.1, y = 6, and N = N 1  = 400,000. In this case, both CE and 
VM found the true six bottlenecks, Note that VM-SCR is the most accurate of the three 
alternatives and that CE underestimates i?. Thus, for this relatively large model, CE without 
screening is affected by the degeneracy of the likelihood ratio, presenting a product of 150 
terms. 

Table 8.8 Performance of Algorithm 8.2.4 for the 3 x 10 model with six bottlenecks. We set 
b = 0.1, -y = 6, N = 400,000, N1 = 400,000. 

CE VM CE-SCR VM-SCR 

Mean 2.44E-8 5.34E-8 5.28E-8 5.17E-8 
Max e^ 5.82E-8 7.18E-8 8.34E-8 6.93E-8 
Min 4.14E-15 2.76E-8 2.74E-8 4.32E-8 
RE 1.05 0.28 0.33 0.15 
CPU 247 482 303 53 1 

8.3 THE CE METHOD FOR OPTIMIZATION 

In this section we show how the CE method works for optimization. Suppose we wish to 
maximize a function S(x) over some set X. Let us denote the maximum by y*; thus, 

y* = maxS(x) . 
XE 2- 

(8.15) 

The problem is called a discrete or continuous optimization problem, depending on whether 
X is discrete or continuous. An optimization problem involving both discrete and con- 
tinuous variables is called a mixed optimization problem. A discrete optimization problem 
is sometimes called a combinatorial optimization problem, which is the main focus of this 
section. 

The CE method takes a novel approach to optimization problems by casting the original 
problem (8.15) into an estimationproblem of rare-eventprobabilities. By doing so, the CE 
method aims to locate an optimal parametric sampling distribution, that is, a probability 
distribution on X, rather than locating the optimal solution directly. To this end, we define 
a collection of indicator functions { I I s ( ~ ) ~ ~ ) }  on X for various levels y E R. Next, let 
{ f(.; v),  v E V }  be a family of probability densities on X parameterized by a real-valued 
parameter vector v. For a fixed u E V we associate with (8.15) the problem of estimating 
the rare-event probability 

where P, is the probability measure under which the random state X has a discrete pdf 
f(.; u) and lE, denotes the corresponding expectation operator. We call the estimation 
problem (8.16) the associatedstochasticproblem. 

It is crucial to understand that one of the main goals of CE in optimization is to generate a 
sequence of pdfs f(.; G o ) ,  f(.; G I ) ,  . . . converging to a degenerate measure (Dirac measure) 
that assigns all probability mass to a single state XT, for which, by definition, the function 
value is either optimal or very close to it. 
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As soon as the associated stochastic problem is defined, we approximate the optimal 
solution, say x', of (8.15) by applying Algorithm 8.2.1 for rare-event estimation, but 
without fixing y in advance. It is plausible that if T *  is close to y*, then f ( . ;  G T )  assigns 
most of its probability mass close to x+. Thus, any X drawn from this distribution can be 
used as an approximation to the optimal solution x* and the corresponding function value 
as an approximation to the true optimal y* in (8.15). 

To provide more insight into the relation between combinatorial optimization and rare- 
event estimation, we first revisit the coin flipping problem of Example 8.4, but from an 
optimization rather than an estimation perspective. This will serve as a highlight to all 
real combinatorial optimization problems, such as the maximal cut problem and the TSP 
considered in the next section, in the sense that only the sample function S(X) and the 
trajectory generation algorithm will be different from the toy example below, while the 
updating of the sequence { (yt, vt)} will always be determined from the same principles. 

H EXAMPLE 8.6 Flipping n Coins: Example 8.4 Continued 

Suppose we want to maximize 

where zi = 0 or 1 for all i = 1, . . . , n. Clearly, the optimal solution to (8.15) is 
x* = (1, .  . . , 1) .  The simplest way to put the deterministic program (8.15) into 
a stochastic framework is to associate with each component xi, i = 1,. . . , n a 
Bernoulli random variable Xi, i = 1,. . . , n. For simplicity, assume that all {X,} 
are independent and that each component i has success probability 1/2. By doing so, 
the associated stochastic problem (8.16) becomes a rare-event estimation problem. 
Taking into account that there is a single solution X* = ( I , .  . . , I), using the CMC 
methodweobtain.t(y*) = l/lXl, where lXl  = 2", whichforlargenisaverysmall 
probability. Instead of estimating l (y)  via CMC, we can estimate it via importance 
sampling using Xi - Ber(pi) ,  i = 1 , .  . . , n. 

The next step is, clearly, to apply Algorithm 8.2.1 to (8.16) without fixing y in 
advance. As mentioned in Remark 8.2.3, CE Algorithm 8.2.1 should be viewed as 
the stochastic counterpart of the deterministic CE Algorithm 8.2.2, and the latter 
will iterate until it reaches a local maximum. We thus obtain a sequence { T t }  that 
converges to a local or global maximum, which can be taken as an estimate for the 
true optimal solution y*. 

In summary, in order to solve a combinatorial optimization problem, we shall employ 
the CE Algorithm 8.2.1 for rare-event estimation without fixing y in advance. By doing 
so, the CE algorithm for optimization can be viewed as a modified version of Algorithm 
8.2.1. In particular, by analogy to Algorithm 8.2.1, we choose a not very small number Q, 

say Q = lo-*, initialize the parameter vector u by setting vo = u, and proceed as follows. 

1. Adaptive updating of 7t. For a fixed ~ ~ - 1 ,  let yt be the (1 - e)-quantile of S(X) 
under ~ ~ - 1 .  As before, an estimator Tt of yt can be obtained by drawing a random 
sample XI, . . . , XN from f(.; vL-l) and then evaluating the sample (1 - Q)-quantile 
of the performances as 

(8.17) 
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2. Adaptive updating of vt. For fixed -yt and vtF1,  derive vt from the solution of the 
program 

max D ( v )  = maxE,,-, [ I { s ( x ) ~ ~ ~ )  In f ( x ;  v)] . (8.18) 

The stochastic counterpart of (8.18) is as follows: for fixed TL and G t - l ,  derive Gt 
from the following program: 

N 

(8.19) 
1 

v N  
max 6 ( v )  = max - C ~ { ~ ( x ~ ) ~ 5 ~ }  l n j ( X k ;  v )  . 

V 
k=l 

It is important to observe that in contrast to (8.5) and (8.6) (for the rare-event setting) 
(8.18) and (8.19) do not contain the likelihood ratio terms W .  The reason is that in the 
rare-event setting the initial (nomina1)parameter u is specified in advance and is an essential 
part of the estimation problem. In contrast, the initial reference vector u in the associated 
stochastic problem is quite arbitrary. In effect, by dropping the W term, we can efficiently 
estimate at each iteration t the CE optimal reference parameter vector vt for the rare-event 
probability P,, ( S ( X )  2 rt)  2 P,,-, ( S ( X )  2 rt), even for high-dimensional problems. 

Remark 8.3.1 (Smoothed Updating) Instead of updating the parameter vector v directly 
via the solution of (8.19), we use the following srnoothedversion 

Vt  = act + (1 - Q)Gt-l ,  (8.20) 

where V t  is the parameter vector obtained from the solution of (8.19) and a is called the 
smoothingparameter, where typically 0.7 < a < 1. Clearly, for Q = 1 we have our 
original updating rule. The reason for using the smoothed (8.20) instead of the original 
updating rule is twofold: (a) to smooth out the values of Gt and (b) to reduce the probability 
that some component GL,% of Gt will be 0 or 1 at the first few iterations. This is particularly 
important when Gt is a vector or matrix of probabilities. Note that for 0 < Q < 1 we 
always have 6t,t > 0, while for Q = 1 we might have (even at the first iterations) 6t,% = 0 
or Ct,% = 1 for some indices i. As result, the algorithm will converge to a wrong solution. 

Thus, the main CE optimization algorithm, which includes smoothed updating of param- 
eter vector v and which presents a slight modification of Algorithm 8.2.1 can be summarized 
as follows. 

Algorithm 8.3.1 (Main CE Algorithm for Optimization) 

I .  Choose an initialparameter vector vo = Go. Set t = 1 (level counter). 

2. GenerateasampleX1,. . . , X N  from thedens i ty f ( . ;v t - l )  andcomputethesample 
(1 - Q)-quantile Tt ofthe performances according to (8.17). 

3. Use the same sample XI, . . . , X N  andsolve the stochastic program (8.19). Denote 
the solution by V t .  

4. Apply (8.20) to smooth out the vector Vt. 

5. rfthe stopping criterion is met, stop; otherwise, set t = t + 1, and return to Step 2. 
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Remark 8.3.2 (Minimization) When S(x) is to be minimized instead of maximized, we 
simply change the inequalities “2” to “5” and take the pquantile instead of the (1 - Q)- 

quantile. Alternatively, we can just maximize -S(x). 

As a stopping criterion one can use, for example: if for some t 2 d, say d = 5, 

(8.21) A -  - 
yt = yt-1 = ’ ’ ‘  = 7 t - d  , 

then stop. As an alternative estimate for y* one can consider 

(8.22) 

Note that the initial vector GO, the sample size N ,  the stopping parameter d, and the number 
p have to be specified in advance, but the rest of the algorithm is “self-tuning”, Note also 
that, by analogy to the simulated annealing algorithm, yt may be viewed as the “annealing 
temperature”. In contrast to simulated annealing, where the cooling scheme is chosen in 
advance, in the CE algorithm it is updated adaptively. 

H EXAMPLE 8.7 Example 8.6 Continued: Flipping Coins 

In this case, the random vector X = (XI , .  . . , X,) - Ber(p) and the parameter 
vector v is p. Consequently, the pdf is 

n 

f (X;  p) = n P X q 1  - Pi ) ’ -x ’  1 

i= 1 

and since each Xi can only be 0 or 1, 

1 
- (XZ - P , )  . 

d x 1-x, -Inf(X;p) = -4 - - - 
dP1 PI 1 - n  (1 - PdPZ 

Now we can find the optimal parameter vector p of (8.19) by setting the first derivatives 
with respect to p i  equal to zero for i = 1,. . . , n, that is, 

Thus, we obtain 

(8.23) 

which gives the same updating formula as (8.10) except for the W term. Recall 
that the updating formula (8.23) holds, in fact, for all one-dimensional exponential 
families that are parameterized by the mean; see (5.69). Note also that the parameters 
are simply updated via their maximum likelihood estimators, using only the elite 
samples; see Remark 8.2.2. 

Algorithm 8.3.1 can, in principle, be applied to any discrete and continuous optimization 
problem. However, for each problem two essential actions need to be taken: 
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1. We need to specify how the samples are generated. In other words, we need to specify 
the family of densities {f(.; v)}. 

2. We need to update the parameter vector v based on CE minimization program (8.19), 
which is the same for all optimization problems. 

In general, there are many ways to generate samples from X ,  and it is not always 
immediately clear which method will yield better results or easier updating formulas. 

Remark 8.3.3 (Parameter Selection) The choice of the sample size N and the rarity pa- 
rameter e depends on the size of the problem and the number of parameters in the associated 
stochastic problem. Typical choices are Q = 0.1 or Q = 0.01 and N = c K ,  where K is the 
number of parameters that need to be estimatedupdated and c is a constant between 1 and 
10. 

By analogy to Algorithm 8.2.2 we also present the deterministic version of Algo- 
rithm 8.3.1, which will be used below. 

Algorithm 8.3.2 (Deterministic CE Algorithm for Optimization) 

1. Choose some VO. Set t = 1 

3. Calculate vt as 

(8.24) 

(8.25) 

4. rfforsome t 2 d, say d = 5, 

Yt = -yt-l = . . . = y t - d  I (8.26) 

then stop (let T denote thejnal iteration); otherwise, set t = t + 1 and reiterate fmm 
Step 2. 

Remark 8.3.4 Note that instead of the CE distance we could minimize the variance of the 
estimator, as discussed in Section 5.6. As mentioned, the main reason for using C E  is that 
for exponential families the parameters can be updated analytically, rather than numerically 
as for the VM procedure. 

Below we present several applications of the CE method to combinatorial optimization, 
namely the max-cut, the bipartition and the TSP. We demonstrate numerically the effi- 
ciency of the CE method and its fast convergence for several case studies. For additional 
applications of CE see [3 11 and the list of references at the end of this chapter. 

8.4 THE MAX-CUT PROBLEM 

The maximal cut or ma-cut problem can be formulated as follows. Given a graph G = 
G( V,  E )  with a set of nodes V = { 1, . . . , n} and a set of edges E between the nodes, 
partition the nodes of the graph into two arbitrary subsets V1 and V2 such that the sum of 



254 THE CROSS-ENTROPY METHOD 

the weights (costs) ctI of the edges going from one subset to the other is maximized. Note 
that some of the ciI may be 0 - indicating that there is, in fact, no edge from i to j .  

As an example, consider the graph in Figure 8.4, with corresponding cost matrix C = 

0 2 2 5 0  
( C t j )  given by 

(8.27) 

0 3 2 1 0  

Figure 8.4 A six-node network with the cut {{I, 5}, {2,3,4}} .  

A cut can be conveniently represented via its corresponding cut vector x = ( 5 1 ,  . . . , zn), 
where zi = 1 if node i belongs to same partition as 1 and 0 otherwise. For example, the 
cut in Figure 8.4 can be represented via the cut vector ( 1 , 0 , 0 , 0 , 1 ) .  For each cut vector x, 
let { V1 (x), Vz (x)} be the partition of V induced by x, such that V1 (x) contains the set of 
indices {i : zi = 1 ) .  If not stated otherwise, we set 5 1  = 1 E V1. 

Let X be the set of all cut vectors x = ( 1 ,  x2, . . . , 2,) and let S(x) be the corresponding 
cost of the cut. Then 

S(x) = C cij . (8.28) 
~EVI(X), IEVZ(X) 

It is readily seen that the total number of cut vectors is 

1x1 = 2n- ' .  (8.29) 

We shall assume below that the graph is undirected. Note that for a directed graph the 
cost of a cut { V1, V Z }  includes the cost of the edges both from Vl to Vz and from Vz to V1. 
In this case, the cost corresponding to a cut vector x is therefore 

S(X) = c ( C i j  + CJE)  (8.30) 

Next, we generate random cuts and update of the corresponding parameters using the 
CE Algorithm 8.3.1. The most natural and easiest way to generate the cut vectors is 

i E  Vi (x), j E  Vz(x) 
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to let X2, . . . , X, be independent Bernoulli random variables with success probabilities 
P2,...,P,. 

Algorithm 8.4.1 (Random Cuts Generation) 

1. Generate an n-dimensional random vector X = (XI , .  . . , X,) from Ber(p) with 
independent components, where p = (1, p2, . . . , p,). 

2. Construct the partition { V1 (X), Vz(X)) ofV and calculate the performance S(X) 
as in (8.28). 

The updating formulas for Pt,t,i are the same as for the toy Example 8.7 and are given in 
(8.23). 

The following toy example illustrates, step by step, the workings of the deterministic 
CE Algorithm 8.3.2. The small size of the problem allows us to make all calculations 
analytically, that is, using directly the updating rules (8.24) and (8.25) rather than their 
stochastic counterparts. 

EXAMPLE 8.8 Illustration of Algorithm 8.3.2 

Consider the five-node graph presented in Figure 8.4. The 16 possible cut vectors 
(see (8.29)) and the corresponding cut values are given in Table 8.9. 

Table 8.9 The 16 possible cut vectors of Example 8.8. 

Itfollowsthatinthiscasetheoptimalcutvectorisx' = ( l , O ,  1,0,1) withS(x*) = 
y' = 16. 

We shall show next that in the deterministic Algorithm 8.3.2, adapted to the max-cut 
problem,theparametervectorspo,p1,. . .convergetotheoptimalp* = ( l , O ,  1,0,1) 
after two iterations, provided that e = lo-' and po = (1, 1/2, 1/2,1/2,1/2). 
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Iteration 1 

In the first step of the first iteration, we have to determine y1 from 

It is readily seen that under the parameter vector PO, S ( X )  takes values in 
{0,6,9,10,11,13,14,  15,16} with probabilities {1/16,3/16,3/16, 1/16, 3/16, 
1/16, 2/16,1/16,1/16}. Hence, we find y1 = 15. In the second step, we need 
to solve 

Pt = argmax &I-, [ I { S ( X ) > 7 t }  l n f ( X ;  P)] ? (8.32) 
P 

which has the solution 

There are only two vectors x for which S(x) 2 15, namely, (1 ,0 ,0 ,0 ,1)  and 
(1 ,0 ,1 ,0 ,  l ) ,  and both have probability 1/16 under PO. Thus, 

- 1  f o r i = l , 5 ,  2/16 I m- 

Iteration 2 

In the second iteration S(X) is 15 or 16 with probability 112. Applying again (8.31) 
and (8.32) yields the optimal yz = 16 and the optimal p~ = (1 ,0 ,1 ,0 ,  l ) ,  respec- 
tively. 

Remark 8.4.1 (Alternative Stopping Rule) Note that the stopping rule (8.21). which is 
based on convergenceof the sequence { ; S t }  toy* ,  stops Algorithm 8.3.1 when the sequence 
{ y t }  does not change. An alternative stopping rule is to stop when the sequence { e t }  is 
very close to a degenerated one, for example if min{p^i, 1 - p î} < E for all i, where E is 
some small number. 

The code in Table 8.lOgives a simple Matlab implementation of the CE algorithm for the 
max-cut problem, with cost matrix (8.27). It is important to note that, although the max-cut 
examples presented here are of relatively small size, basically the same CE program can 
be used to tackle max-cut problems of much higher dimension, comprising hundreds or 
thousands of nodes. 
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Table 8.10 Matlab CE program to solve the max-cut problem with cost matrix (8.27). 

global C; 
C = [ O  2 2 5 0; % cost matrix 

2 0 1 0 3 ;  
2 1 0 4 2 ;  
5 0 4 0 1 ;  
0 3 2 1 01; 

II = 5; N = 100; Ne = 10; eps = 10--3; p = 1/2*ones(l,m); p(1) = 1; 
while max(min(p.1-p)) > eps 

x = (rand(N,m) < ones(N,l)*p); generate cut vectors 
sx = S(x); 
sortSX = sortrows( [x SXI , m+l) ; 
p = mean(sortSX(N-Ne+l:N, 1:m)) % update the parameters 

end 

function perf = S(x) 
global C; 
B = size(x,l); 
for i=l:N 

% performance function 

V1 = find(x(i,:)); 
V2 = find("x(i,:)); 

% {V1,V2) is the partition 

?erf(i,l) = sum(sum(C(V1,V2))); % size of the cut 
m d  

W EXAMPLE 8.9 Maximal Cuts for the Dodecahedron Graph 

To further illustrate the behavior of the CE algorithm for the max-cut problem, con- 
sider the so-called dodecahedron graph in Figure 8.5. Suppose that all edges have 
cost 1. We wish to partition the node set into two subsets (color the nodes black and 
white) such that the cost across the cut, given by (8.28), is maximized. Although this 
problem exhibits a lot of symmetry, it is not clear beforehand what the solution(s) 
should be. 

2 

Figure 8.5 The dodecahedron graph. 
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The performance of the CE algorithm is depicted in Figure 8.6 using N = 200 
and e = 0.1. 

1 

0 
0 2 4 6 6 10 12 14 16 18 20 

Figure 8.6 The evolution of the CE algorithm for the dodecahedron max-cut problem. 

Observe that the probability vector Gt quickly (eight iterations) converges 
to a degenerate vector- corresponding (for this particular case) to the so- 
lution x* = (110,1,1,01011,0,0,1,1,0,  O , l , O , O , l , l , l , O ) .  Thus, V; = 
{ 1,3,4,7,10,11,14,17,18,19}. This required around 1600 function evaluations, 
as compared to 219 - 1 5 5 . lo5  if all cut vectors were to be enumerated. The 
maximal value is 24. It is interesting to note that, because of the symmetry, there 
are in fact many optimal solutions. We found that during each run the CE algorithm 
“focuses” on one (not always the same) of the solutions. 

The Max-cut Problem with r Partitions 

We can readily extend the max-cut procedure to the case where the node set V is partitioned 
into ‘r > 2 subsets { Vl , . . . , V T }  such that the sum of the total weights of all edges going 
from subset Va to subset Vb, a ,  b = 1, . . . , T,  ( a  < b)  is maximized. Thus, for each partition 
{ V1:. . . , V,}, the value of the objective function is 

2 i: c cv 
a= l  b=a+l iEV,, 3EVb 

In this case, one can follow the basic steps of Algorithm 8.3.1 using independent r-point 
distributions, instead of independent Bernoulli distributions, and update the probabilities as 
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8.5 THE PARTITION PROBLEM 

The partition problem is similar to the max-cut problem. The only difference is that the 
size of each class i s j x e d  in advance. This has implications for the trajectory generation. 
Consider, for example, a partition problem in which V has to be partitioned into two 
equal sets, assuming n is even. We could simply use Algorithm 8.4.1 for the random cut 
generation, that is, generate X N Ber(p) and reject partitions that have unequal size, but 
this would be highly inefficient. We can speed up this method by drawing directly from the 
conditionaldistribution o f X  - Ber(p) given X I + .  . .+X, = n/2. Theparameterp is then 
updated in exactly the same way as before. Unfortunately, generating from a conditional 
Bernoulli distribution is not as straightforward as generating independent Bernoulli random 
variables. A useful technique is the so-called drafting method. We provide computer code 
for this method in Section A.2 of the Appendix. 

As an alternative, we describe next a simple algorithm for the generation of a random 
bipartition { V1 , V2) with exactly 7n. elements in V1 and n - m elements in V2 that works 
well in practice. Extension of the algorithm to r-partition generation is simple. 

The algorithm requires the generation of random permutations 17 = (171,. . . , 17,) of 
(1,. . . , n),  uniformly over the space of all permutations. This can be done via Algorithm 
2.8.2. We demonstrate our algorithm first for a five-node network, assuming m. = 2 and 
m - n = 3 for a given vector p = (p1, . . . , p5) .  

EXAMPLE 8.10 Generating a Bi-Partition for m = 2 and n = 5 

1. Generate a random permutation II = (171,. . . , H5) of (1,. . . ,5 ) ,  uniformly over the 
space of all 5!  permutations. Let (TI . . . , 7 ~ 5 )  be a particular outcome, for example, 
(TI ,  . . . , " 5 )  = (3 ,5 ,1 ,2 ,4) .  This means that we shall draw independent Bernoulli 
random variables in the following order: Ber(ps), Ber(p5), Ber(pl), . . .. 

2. Given II = (TI , .  . . " 5 )  and the vector p = (p1, . . . ,p5), generate independent 
Bernoulli random variables X,,, X,, . . . from Ber(p,, ), Ber(p,,), . . . , respectively, 
until either exactly m = 2 unities or n - 7n = 3 zeros are generated. Note that in 
general, the number of samples is a random variable with the range from min{ m, n - 
m} to n. Assume for concreteness that the first four independent Bernoulli samples 
(from the above Ber(p3), Ber(p5), Ber(pl), Ber(p2)) result in the following outcome 
(0 ,  0,1,0). Since we have already generated three Os, we can set X 4  = 1 and deliver 
{V1(X),V2(X)} = {(1,4)1 (2,3,5)} as thedesiredpartition. 

3. If in the previous step m = 2 unities are generated, set the remaining three elements 
to 0; if, on the other hand, three 0s are generated, set the remaining two elements to 
1 and deliver X = ( X I ,  . . . , X,) as the final partition vector. Construct the partition 
{Vl(X),V2(X)} of V. 

With this example in hand, the random partition generation algorithm can be written as 
follows. 
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Algorithm 8.5.1 (Random Partition Generation Algorithm) 

I .  Generate a randompermutation II = (n1, . . . , II,) o f (  1, . . . , n) uniformly over the 
space of all n! permutations. 

2. Given II = (nl, . . . , n,), independently generate Bernoulli random variables X,,, 
X, , ,  . . . from Ber(p,,), Ber(p,,,),. . ., respectively, until m Is or n - m 0s are 
generated. 

3. in the previous step m Is are generated, set the remaining elements to 0; i f ;  on 
the other hand, n - m 0s are generated, set the remaining elements to Is. Deliver 
X = ( X I , .  . . , X , )  as thejnalpartition vector: 

4. Construct thepartition { Vl(X), Vz(X)} of V and calculate theperformance S(X) 
according to (8.28). 

We take the updating formula for the reference vector p exactly the same as in (8.10). 

8.5.1 Empirical Computational Complexity 

Finally, let us discuss the computational complexity of Algorithm 8.3.1 for the max-cut and 
the partition problems, which can be defined as 

Kn = Tn(NnGn + Un)  . (8.34) 

Here T, is the total number of iterations needed before Algorithm 8.3.1 stops; N ,  is the 
sample size, that is, the total number of maximal cuts and partitions generated at each 
iteration; G, is the cost of generating the random Bernoulli vectors of size n for Algo- 
rithm 8.3.1; Un = O(Nnn2)  is the cost of updating the tuple ( y t ,  &). The last follows 
from the fact that computing S(X) in (8.28) is a O ( n 2 )  operation. 

For the model in (8.49) we found empirically that T, = O(lnn), provided that 100 < 
n < 1000. For the max-cut problem, considering that we take n < N ,  < 10n and that 
G, is O(n) , we obtain K,  = O ( n 3  Inn) .  In our experiments, the complexity we observed 
was more like 

K, = O ( n 1 n n ) .  

The partition problem has similar computational characteristics. It is important to note that 
these empirical complexity results are solely for the model with the cost matrix (8.49). 

8.6 THE TRAVELING SALESMAN PROBLEM 

The CE method can also be applied to solve the traveling salesman problem (TSP). Recall 
(see Example 6.12 for a more detailed formulation) that the objective is to find the shortest 
tour through all the nodes in a graph G. As in Example 6.12, we assume that the graph is 
complete and that each tour is represented as a permutation x = ( 2 1 ,  . . . , 2,) of (1, . . . , n). 
Without loss of generality we can set 2 1  = 1, so that the set of all possible tours X has 
cardinality (XI = (n  - l)!. Let S(x) be the total length of tourx  E X ,  and let C = ( c i j )  

be the cost matrix. Our goal is thus to solve 

(8.35) 
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In order to apply the CE algorithm, we need to specify a parameterized random mecha- 
nism to generate the random tours. As mentioned, the updating formulas for the parameters 
follow, as always, from CE minimization. 

An easy way to explain how the tours are generated and how the parameters are updated 
is to relate (8.35) to an equivalent minimization problem. Let 

- 
X = ( ( 5 1 , .  ..,Zn) : 5 1  = 1, zi E {l, . .  . ,n}  , i = 2 ,..., n}  (8.36) 

be the set of vectors that correspond to tours that start in 1 and can visit the same city 
more than once. Note that IZx( = nn-' and X c When n = 4, we could have, for 
example, x = ( 1 , 3 , 1 , 3 )  E F, corresponding to thepath (not tour) 1 -+ 3 -+ 1 -+ 3 -+ 1. 
Define the function 2 on g b y  s(x) = S(x), if x E X and ?(x) = 00 otherwise. Then, 
obviously, (8.35) is equivalent to the minimization problem 

minimize S(x) over x E F.  (8.37) 

A simple method to generate a random path X = ( X I ,  . . . , X,) in X is to use a Markov 
chain on the graph G, starting at node 1 and stopping after n steps. Let P = ( p i j )  denote 
the one-step transition matrix of this Markov chain. We assume that the diagonal elements 
of P are 0 and that all other elements of P are strictly positive, but otherwise P is a general 
n x n stochastic matrix. 

The pdf f(.; P) of X is thus parameterized by the matrix P, and its logarithm is given 

- 

- 

by 
n 

r= l  i,j 

where Kj(r) is the set of all paths in g f o r  which the r-th transition is from node i to 
j .  The updating rules for this modified optimization problem follow from (8.18), with 
{S(Xi) 2 rt} replaced with {%(Xi) < r t} ,  under the condition that the rows of P sum 
up to 1 .  Using Lagrange multipliers u1, . . . , un, we obtain the maximization problem 

Differentiating the expression within braces above with respect to p i j  yields, for all j = 
1 . .  . . .n, 

Summing over j = 1 , .  . . , n gives lEp [Itg(x)67) C:==, Z t X c ~ ( , . ) } ]  = -uaT where 

K(r) is the set of paths for which the r-th transition starts from node a.  It follows that the 
optimal pv is given by 

(8.40) 



262 THE CROSS-ENTROPY METHOD 

The corresponding estimator is 

N n 

- k = l  r= l  
Pij = n 

(8.41) 

k = l  r=l 

This has a very simple interpretation. To update p i j ,  we simply take the fraction of times 
in which the transition from i to j occurs, taking into account only those paths that have a 
total length less than or equal to y. 

This is how one could, in principle, carry out the sample generation and parameter 
updating for problem (8.37): generate paths via a Markov process with transition matrix 
P and use the updating formula (8.41). However, in practice, we would never generate 
the tours this way, since most paths would visit cities (other than 1) more than once, and 
therefore theirs” values would be cc -that is, most of the paths would not constitute tours. 
In order to avoid the generation of irrelevant paths, we proceed as follows. 

Algorithm 8.6.1 (Trajectory Generation Using Node Transitions) 

1. Dejne P(’) = P andX1 = 1. Let k = 1. 

2. Obtain P(k+l) from P(k) byjrs t  setting the xk-th column of P(k) to 0 and then 
normalizing the rows to sum up to I .  Generate Xk+l from the distribution formed 
by the Xk-th row of P(k). 

3. I f k  = n - 1, then stop; otherwise, set k = k + 1 and reiterate from Step 2. 

A fast implementation of the above algorithm, due to Radislav Vaisman, is given by the 
following procedure, which has complexity O(n2). Here i is the currently visited node, and 
( b l ,  . . . , bn)  is used to keep track of which states have been visited: bi = 1 if node i has 
already been visited and 0 otherwise. 

Procedure (Fast Generation of Trajectories) 

1: Let t = 1, bl = 1, b, = 0, for all j # 1, i = 1, and XI = 1 
2: Generate U - U(0, l ) ,  and let R = U C,”=l(l - b 3 ) p i j  
3: Let sum = 0 and j = 0 
4: while sum < R do 

6: if b, = 0 
7: 

8: end 
9: end 

10: S e t l = t + l ,  X , = j ,  b , = I a n d i = j  
1 1 :  if t = ‘n 
12: stop 
13: else return to 2 
14: end 

5:  j = j + 1  

sum = sum + p i j  
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It is important to realize that the updating formula for p i j  remains the same. By using 
Algorithm 8.6.1, we are merely speeding up our naive trajectory generation by only gen- 
erating tours. As a consequence, each trajectory will visit each city once, and transitions 
from i to j can at most occur once. It follows that 

so that the updating formula for p i j  can be written as 

(8.42) 

k = l  

where Xij is the set of tours in which the transition from i to j is made. This has the same 
“natural” interpretation dispssed for (8.41). 

For the initial matrix PO, one could simply take all off-diagonal elements equal to 
l / ( n  - I) ,  provided that all cities are connected. 

Note that e and a should be chosen as in Remark 8.3.3, and the sample size for TSP 
should be N = c n 2 ,  with c > 1, say c = 5. 

EXAMPLE 8.11 TSP on Hammersley Points 

To shed further light on the CE method applied to the TSP, consider a shortest (in 
Euclidean distance sense) tour through a set of Hammerslty points. These form 
an example of low-discrepancy sequences that cover a d-dimensional unit cube in 
a pseudo-random but orderly way. To find the 25 two-dimensional Hammersley 
points of order 5, construct first the 2-coordinates by taking all binary fractions 
2 = O.zla2.. .25. Then let the corresponding y coordinate be obtained from z 
by reversing the binary digits. For example, if z = 0.11000 (binary), which is 
z = 1/2 + 1/4 = 3/4 (decimal), then y = 0.00011 (binary), which is y = 3/32 
(decimal). The Hammersley points, in order of increasing y. are thus 

Table 8.1 1 and Figure 8.7 show the behavior of the CE algorithm applied to the 
Hammersley TSP. In particular,Table 8.1 1 depicts the progression of^yt and S,b, which 
denote the largest of the elite values in iteration t and the best value encountered so far, 
respectively. Similarly, Figure 8.7 shows the evolution of the transition matrices Pt. 
Here the initial elements p ~ , ~ ~ ,  i # j are all set to l / ( n  - 1) = 1/31; the diagonal 
elements are 0. We used a sample size of N = 5 n2 = 5120, rarity parameter 
e = 0.03, and smoothing parameter a = 0.7. The algorithm was stopped when no 
improvement in Tt during three consecutive iterations was observed. 
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Table 8.11 Progression of the CE algorithm for the Hammersley TSP. 

t 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

- s," 
1 1.0996 
10.0336 
9.2346 

8.27044 
7.93992 
7.54475 
7.32622 
6.63646 
6.63646 
6.61916 
6.43016 
6.20255 
6.1 4 1 47 
6.12181 
6.02328 

r2 
13.2284 
11.8518 
10.7385 
9.89423 
9.18102 
8.70609 
8.27284 
7.943 16 
7.71491 
7.48252 
7.25513 
7.07624 
6.95727 
6.76876 
6.58972 

t 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

- s," 
5.95643 
5.89489 
5.83683 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 
5.78224 

r2 
~ 

6.43456 
6.31772 
6.22153 
6.18498 
6.1044 
6.0983 

6.06036 
6.00794 
5.91265 
5.86394 
5.86394 
5.83645 
5.83645 
5.83645 

Figure 8.7 Evolution of Pt in the CE algorithm for the Harnmersley TSP. 
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The optimal tour length for the Hammersley problem is -y* = 5.78224 (rounded), 
which coincides with T z g  found in Table 8.1 1. A corresponding solution (optimal 
tour) is (1,5,9, 17, 13, 11,15, 18,22,26,23, 19,21,25,29,27,31,30,32,28,24,20, 
16, 8, 12, 14, 10 ,6 ,4 ,2 ,7 ,3) ,  depicted in Figure 8.8. There are several other optimal 
tours (see Problem 8.13) but all exhibit a straight line through the points (10,10)/32, 
(14,14)/32, (17,17)/32 and (2 1,21)/32. 

Figure 8.8 An optimal tour through the Hammersley points. 

8.6.1 Incomplete Graphs 

The easiest way to deal with TSPs on incomplete graphs is, as already remarked in Exam- 
ple 6.12, to make the graph complete by acquiring extra links with infinite cost. However, 
if many entries in the cost matrix are infinite, most of the generated tours in Algorithm 8.6.1 
will initially be invalid (yield a length of 00). A better way of choosing PO = ( ~ 0 , ~ ~ )  is 
then to assign smaller initial probabilities to pairs of nodes for which no direct link exists. 
In particular, let d, be the degree of node i, that is, the number of finite entries in the 2-th 
row of the matrix C. We can then proceed as follows: 

1. If cY = 00, set ~ 0 , ~ ~  to y, where 6 is a small number, say b = 0.1. Set the 
remaining elements to E ,  except for po,+ = 0. Since the rows of PO sum up to 1, we 
have& = n-d,-l. 6 

2. Keep the above p ~ , , ~  = E = for all iterations of the CE Algorithm 8.3.1. 

Since 6 is the sum of all p t ,V  corresponding to the 00 elements in the 2-th row of C, and 
since all such p t , , ]  are equal to each other (E) ,  we can generate a transition from each state 
i using only a (d, + 1)-point distribution rather than the n-point distribution formed by the 
2-th row of G t .  Indeed, if we relabel the elements of this row such that the first d, entries 
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correspond to existing links, while the next n - di - 1 correspond to nonexisting links, then 
we obtain the following faster procedure for generating transitions. 

Algorithm 8.6.2 (A Fast Procedure for Generating Transitions) 

1. Generate a random variable U - U(0, 1). 

2.  If U < 1 - 6, generate the next transition from the discrete di point pdf with proba- 
bilities p t , ~ / ( l  - 6).  j = 1,. . . , di. 

3. If U > 1 - 6, generate the next transition by drawing a discrete random variable 
2 uniformly distributed over the points d, + 1,. . . , n - 1 (recall that these points 
correspond to the co elements in the i-th row of C). 

It is important to note that the small elements of Po corresponding to infinities in matrix C 
should be kept the same from iteration to iteration rather than being updated. By doing so, 
one obtains considerable speedup in trajectory generation. 

8.6.2 Node Placement 

We now present an alternative algorithm for trajectory generation due to Margolin [20] called 
the node placement algorithm. In contrast to Algorithm 8.6.1, which generates transitions 
from node to node (based on the transition matrix P = ( p i j ) ) ,  in Algorithm 8.6.3 below, a 
similar matrix 

(8.43) 

generates node placements. Specifically, p ( t , J )  corresponds to the probability of node i 
being visited at the j-th place in a tour of n cities. In other words, p ( t , J )  can be viewed as 
the probability that city (node) i is “arranged” to be visited at the j-th place in a tour of n 
cities. More formally, a node placement vector is a vector y = (y1, . . . , y,) such that y, 
denotes the place of node i in the tour x = (TI,. . . , xn) .  The precise meaning is given by 
the correspondence 

y , = j  e x J = i ,  (8.44) 

for all i ,  j E { 1, . . . , n}. For example, the node placement vector y = (3 ,4 ,2 ,6 ,5 ,1 )  in a 
six-node network defines uniquely the tour x = (6 ,3 ,1 ,2 ,5 ,4 ) .  The performance of each 
node placement y can be defined as s (y)  = S(x), where x is the unique path corresponding 
to y. 

Algorithm 8.6.3 (Trajectory Generation Using Node Placements) 

1. Dejne P(’) = P. Let k = 1. 

2. Generate Y k  from the distribution formed by the k-th row o ~ P ( ~ ) .  Obtain the matrix 
P(k+‘) from P(k) byjrst setting the Yk-th column of P(k) to 0 and then normalizing 
the rows to sum up to 1. 

3. I f k  = n then stop; otherwise, set k = k + 1 and reiterate from Step 2. 

4. Determine the tour by (8.44) and evaluate the length of the tour by (8.35) 
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mean 
3325.6 
6864 

7028.9 
1628.6 
2030.9 
717.7 
433.9 
7794 
744.1 
543.5 

112791 

It is readily seen that the updating formula for p(i,j) is now 

max 
3336 
6870 
7069 
1648 
2045 
736 
437 
8169 
765 
547 

117017 

k=l 

Our simulation results with the TSP and other problems do not indicate clear superiority 
of either Algorithm 8.6.1 or Algorithm 8.6.3 in terms of the efficiency (speed and accuracy) 
of the main CE Algorithm 8.3.1. 

burmal4 

ulyssesl6 

ulysses22 

bayg29 

bays29 

dantzig42 

ei151 

berlin52 

st70 

ei176 

pr76 

8.6.3 Case Studies 

3323 
6859 
7013 
1610 
2020 
699 
426 
7542 
675 
538 

108159 

To illustrate the accuracy and robustness of the CE algorithm, we applied the algorithm to 
a number of benchmark problems from the TSP library 

0.14 
0.21 
1.18 
4.00 
3.83 
19.25 
65.0 
64.55 
267.5 
467.3 
375.3 

http://wvw.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/ 

12.4 
14.1 
22.1 
28.2 
27.1 
38.4 

63.35 
59.9 
83.7 
109.0 
88.9 

In all cases the same set of CE parameters were chosen: e = 0.03, a = 0.7, N = 5 n2, 
and we use the stopping rule (8.21) with the parameter d = 3. 

Table 8.12 presents the performance of Algorithm 8.3.1 for a selection of symmetric 
TSPs from this library. To study the variability in the solutions, each problem was repeated 
10 times. In the table, rnin, mean and mux denote the smallest (that is, best), average, and 
largest of the 10 estimates for the optimal value. The true optimal value is denoted by y*. 

The average CPU time in seconds and the average number of iterations are given in the 
last two columns. The size of the problem (number of nodes) is indicated in its name. For 
example, st70 has n, = 70 nodes. Similar case studies for the asymmetric case may be 
found in Table 2.5 of [3 11. 

Table 8.12 Case studies for the TSP. 

file I Y* min 
3323 
6859 
7013 
1610 
2020 
706 
428 
7618 
716 
540 

109882 

CPU I T 
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At this end, note that CE is ideally suitable for parallel computation, since parallel 
computing speeds up the process by almost a factor of T ,  where T is the number of parallel 
processors. 

One might wonder why the CE Algorithm 8.2.1, with such simple updating rules and 
quite arbitrary parameters a and e, performs so nicely for combinatorial optimization prob- 
lems. A possible explanation is that the objective function S for combinatorial optimization 
problems is typically close to being additive; see, for example, the objective function S for 
the TSP problem in (8.35). For other optimization problems (for example, optimizing 
complex multiextremal continuous functions), one needs to make a more careful and more 
conservative choice of the parameters (Y and e. 

8.7 CONTINUOUS OPTIMIZATION 

We will briefly discuss how the CE method can be applied to solve continuous optimization 
problems. Let S(x) be a real-valued function on B”. To maximize the function via CE, 
one must specify a family of parameterized distributions to generate samples in B”. This 
family must include, at least in the limiting case, the degenerate distribution that puts all its 
probability mass on an optimal solution. A simple choice is to use a multivariate normal 
distribution, parameterized by a mean vector p = ( P I ,  . . . , f i n )  and a covariance matrix C. 
When the covariance matrix is chosen to be diagonal - that is, the components of X are 
independent - the CE updating formulas become particularly easy. In particular, denoting 
{ p i }  and {oi} the means and standard deviations of the components, the updating formulas 
are (see Problem 8.17) 

and 

(8.46) 

(8.47) 

where Xki is the i-th component of Xk and X I ,  . . . , X, is a random sample from 
N(@t- l ,Et- l ) .  In other words, the means and standard deviations are simply up- 
dated via the corresponding maximum likelihood estimators based on the elite samples 
4 = {X, : S ( X k )  b %}. 

EXAMPLE 8.12 The Peaks Function 

Matlab’s peaks function, 

has various local maxima. In Section A S  of the Appendix, a simple Matlab 
implementation of CE Algorithm 8.3.1 is given for finding the global maximum 
of this function, which is approximately y’ = 8.10621359 and is attained at 
X* = (-0.0093151,1.581363). The choice of the initial value for p is not im- 
portant, but the initial standard deviations should be chosen large enough to ensure 
initially a close to uniform sampling of the region of interest. The CE algorithm is 
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stopped when all standard deviations of the sampling distribution are less than some 
small E .  

Figure 8.9 gives the evolution of the worst and best of the elite samples, that is, Tt 

and S,‘, for each iteration t .  We see that the values quickly converge to the optimal 
value Y*. 

” 
1 2 3 4 5 6 7 8 9 

iteration t 

Figure 8.9 Evolution of the CE algorithm for the peaks function. 

Remark 8.7.1 (Injection) When using the CE method to solve practical optimization prob- 
lems with many constraints and many local optima, it is sometimes necessary to prevent 
the sampling distribution from shrinking too quickly. A simple but effective approach is 
the following injection method [3]. Let St denote the best performance found at the t-th 
iteration, and (in the normal case) let at denote the largest standard deviation at the t-th 
iteration. If a,‘ is sufficiently small and IS,‘ - S,‘-,( is also small, then add some small value 
to each standard deviation, for example a constant b or the value c IS,‘ - S,‘-l I ,  for some 
fixed 6 and c. When using CE with injection, a possible stopping criterion is to stop after a 
fixed number of injections. 

8.8 NOISY OPTIMIZATION 

One of the distinguishing features of the CE Algorithm 8.3.1 is that it can easily handle 
noisy optimization problems, that is, when the objective function S(x) is corrupted with 
noise. We denote such a noisy function by g(x). We assume that for each x we can readily 
obtain an outcome of g(x), for example via generation of some additional random vector 
Y ,  whose distribution may depend on x. 

A classical example of noisy optimization is simulation-based optimization [32]. A 
typical instance is the buffer allocation problem, where the objective is to allocate n buffer 
spaces among them - 1 “niches” (storage areas) between m machines in a serial production 
line so as to optimize some performance measure, such as the steady-state throughput. This 
performance measure is typically not available analytically and thus must be estimated via 
simulation. A detailed description of the buffer allocation problem, and of how CE can be 
used to solve this problem, is given in [3 11. 

Another example is the noisy TSP, where, say, the cost matrix (c i j ) ,  denoted now by 
Y = (XI), is random. Think of x3 as the random time to travel from city i to city j .  The 
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4800 

4600. 

4400. 

4200- 

tF 4000. 

3800- 

3600. 

3400 

3200 

total cost of a tour x = ( 2 1 ,  . . . , z,) is given by 

b 

. 
0 

0 

8 
b 

- . 
4 8 ~ a a a e e a o o o o o o o  

(8.48) 
i=l 

We assume that IE[Y,,] = c l j .  
The main CE optimization Algorithm 8.3.1 for deterministic functions S(x) is also valid 

for noisy ones S(X). Extensive numerical studies [31] with the noisy version of Algorithm 
8.3.1 show that it works nicely, because during the course of the optimization itfilters 
out efficiently the noise component from S(x). However, to get reliable estimates of the 
optimal solution of combinatorial optimization problems, one is required to increase the 
sample size N by a factor 2 to 5 in each iteration of Algorithm 8.3.1. Clearly, this factor 
increases with the “power” of the noise. 

EXAMPLE 8.13 Noisy TSP 

Suppose that in the first test case of Table 8.12, burmal4, some uniform noise is 
added to the cost matrix. In particular, suppose that the cost of traveling from i to j 
is given by x3 ,., U(c,, - 8, c13 + 8), where ct3 is the cost for the deterministic case. 
The expected cost is thus IE[Y,,] = c , ] ,  and the total cost s (̂x) of a tour x is given 
by (8.48). The CE algorithm for optimizing the unknown S(x) = IE[ŝ (x)] remains 
exactly the same as in the deterministic case, except that S(x) is replaced with s^(x) 
and a different stopping criterion than (8.21) needs to be employed. A simple rule 
is to stop when the transition probabilities & satisfy min(p^t,13, 1 - < E for 
all z and j ,  similar to Remark 8.4.1. We repeated the experiment 10 times, taking a 
sample size twice as large as for the deterministic case, that is, N = 10. n 2 .  For the 
above stopping criterion we took E = 0.02. The other parameters remained the same 
as those described in Section 8.6.3. CE found the optimal solution eight times, which 
is comparable to its performance in the deterministic case. 

Figure 8.10 displays the evolution of the worst performance of the elite samples 
(y t )  for both the deterministic and noisy case denoted by Tl t  and Tzt, respectively. 

Figure 8.10 Evolution of the worst of the elite samples for a deterministic and noisy TSP. 
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We see in both cases a similar rapid drop in the level yt.  It is important to note, 
however, that even though here the algorithm in both the deterministic and noisy 
cases converges to the optimal solution, the {&} for the noisy case do not converge 
to y* = 3323, in contrast to the {Tit} for the deterministic case. This is because the 
latter estimates eventually the (1 - p)-quantile of the deterministic S(x*), whereas 
the former estimates the (1  - e)-quantile of s^(x*), which is random. To estimate 
S(x') in the noisy case, one needs to take the sample average of S(XT), where XT 

is the solution found at the final iteration. 

PROBLEMS 

8.1 In Example 8.2, show that the true CE-optimal parameter for estimating P(x 2 32) 
is given by v* = 33. 

8.2 Write a CE program to reproduce Table 8.1 in Example 8.2. Use the final reference 
parameter $3 to estimate e via importance sampling, using a sample size of ~1 = lo6. 
Estimate the relative error and give an approximate 95% confidence interval. Check if the 
true value of e is contained in this interval. 

8.3 In Example 8.2 calculate the exact relative error for the importance sampling estimator 
Fwhen using the CE optimal parameter T I *  = 33 and compare it with the one estimated in 
Problem 8.2. How many samples are required to estimate l? with the same relative error, 
using CMC? 

8.4 Implement the CE Algorithm 8.2.1 for the stochastic shortest path problem in Exam- 
ple 8.5 and reproduce Table 8.3. 

8.5 Slightly modify the program used in Problem 8.4 to allow Weibull-distributed lengths. 
Reproduce Table 8.4 and make a new table for a = 5 and y = 2 (the other parameters 
remain the same). 

8.6 Make a table similar to Table 8.4 by employing the standard CE method. That is, take 
Weib(a, v%-') as the importance sampling distribution for the i-th component and update 
the {vi} via (8.6). 

8.7 Consider again the stochastic shortest path problem in Example 8.5, but now with 
nominal parameter u = (0 .25,0.5,0.1,0.3,0.2) .  Implement the root-finding Algo- 
rithm 8.2.3 to estimate for which level y the probability l? is equal to Also, give 
a 95% confidence interval for y. for example, using the bootstrap method. 

8.8 Adapt the cost matrix in the max-cut program of Table 8.10 and apply it to the 
dodecahedron max-cut problem in Example 8.9. Produce various optimal solutions and 
find out how many of these exist in total, disregarding the fivefold symmetry. 

8.9 Consider the following symmetric cost matrix for the max-cut problem: 

(8.49) 

where 211 is an m x rn (m < n)  symmetric matrix in which all the upper-diagonalelements 
are generated from a U(a, b) distribution (and all the lower-diagonal elements follow by 
symmetry), 2 2 2  is an (n  - m) x (n  - m) symmetric matrix that is generated in the same 
way as 211, and all the other elements are c, apart from the diagonal elements, which are 0. 



272 THE CROSS-ENTROPY METHOD 

a) Show that if c > b ( n  - m)/m,  the optimal cut is given by V *  = 

b) Show that the optimal value of the cut is y* = c m  (,n - m). 
c) Implement and run the CE algorithm on this synthetic max-cut problem for a 

network with n = 400 nodes, with m = 200. Generate Z l l  and 2 2 2  from the 
U(0, l )  distribution and take c = 1. For the CE parameters take N = 1000 and 
e = 0.1. List for each iteration the best and worst of the elite samples and the 
Euclidean distance 1 - p' I I = d m  as a measure of how close the 
reference vector is to the optimal reference vector p' = (1,1, . . . ,1 ,0 ,0 ,  . . . , 0). 

8.10 Consider a TSP with cost matrix C = ( c l J )  defined by C ~ , ~ + I  = 1 for all i = 
1 , 2 , .  . . , n - 1, and cn,l = 1, while the remaining elements clJ - U(a, b) ,  j # i + 1, 1 < 
a < b, and c, ,  = 0. 

a) Verify that the optimal permutatiodtour is given by x* = (1 ,2 ,3 ,  . . . , n),  with 
minimal value y* = n. 

b) Implement a CE algorithm to solve an instance of this TSP for the case n = 30 
and make a table of the performance, listing the best and worst of the elite samples 
at each iteration, as well as 

{ { 1, . . . , m} , { m + 1, . . . , n}  }. 

t = 1 , 2 , .  . ., which corresponds to the m i n m a x  value of the elements of the 
matrix 6, at iteration t .  Use d = 3, e = 0.01. N = 4500, and (Y = 0.7. Also, 
keep track of the overall best solution. 

8.1 1 Run Algorithm 8.3.1 on the data from the URL 

http://~~~.i~r.uni-heidelberg.de/groups/cornopt/software/TSPLIB95/atsp/ 

and obtain a table similar to Table 8.12. 

8.12 
CE parameters: 

Select a TSP of your choice. Verify the following statements about the choice of 

a) By reducing Q or increasing a, the convergence is faster but we can be trapped in 

b) By reducing Q, one needs to decrease simultaneously a, and vice versa, in order 

c) By increasing the sample size N ,  one can simultaneously reduce e or (and) in- 

8.13 Find out how many optimal solutions there are for the Hammersley TSP in Exam- 
ple 8.1 1. 

8.14 Consider a complete graph with n nodes. With each edge from node i to j there 
is an associated cost c t j .  In the longestpathproblem the objective is to find the longest 
self-avoiding path from a certain source node to a sink node. 

a) Assuming the source node is 1 and the sink node is n, formulate the longest path 
problem similar to the TSP. (The main difference is that the paths in the longest 
path problem can have different lengths.) 

b) Specify a path generation mechanism and the corresponding CE updating rules. 
c) Implement a CE algorithm for the longest path problem and apply it to a test 

a local minimum. 

to avoid convergence to a local minimum. 

crease a. 

problem. 
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8.15 Write a CE program that solves the eight-queens problem using the same config- 
uration representation X = ( X I , .  . . , X,)  as in Example 6.13. A straightforward way to 
generate the configurations is to draw each X i  independently from a probability vector 
( p , ~ ,  . . . , p i s ) ,  i = 1, . . . ,8. Take N = 500, o = 0.7, and Q = 0.1. 

8.16 In the permutationflow shop problem (PFSP) n jobs have to be processed (in the 
same order) on m machines. The objective is to find the permutation of jobs that will 
minimize the makespan, that is, the time at which the last job is completed on machine m. 
L e t t ( i , j )  betheprocessingtimeforjobionmachinejandletx = (zlrx2, ..., L,) beajob  
permutation. Then the completion time C ( q ,  j) for job i on machine j can be calculated 
as follows: 

The objective is to minimize S(x) = C(xnr  m). The trajectory generation for the PFSP is 
similar to that of the TSP. 

a) Implement a CE algorithm to solve this problem. 
b) Run the algorithm for a benchmark problem from the Internet, for 

example http://ina2.eivd.ch/Collaborateurs/etd/problemes.dir/ 
ordonnancement.dir/ordonnancement.html. 

8.17 Verify the updating formulas (8.46) and (8.47). 

8.18 Plot Matlab's peaks function and verify that it has three local maxima. 

8.19 Use the CE program in Section A S  of the Appendix to maximize the function 
S(z) = e-(z-2)2 + 0.8 e-(z+2)z. Examine the convergence of the algorithm by plotting 
in the same figure the sequence of normal sampling densities. 

8.20 Use the CE method to minimize the trigonometric function 

n 

S(x) = 1 + c 8 s i n 2 ( q ( z ,  - x:)~) + 6sin2(2q(zi - L , ' ) ~ )  + p(xt  - L,')' , (8.50) 
t = l  

with 7 = 7, p = 1, and xf = 0.9, i = 1,. . . , n. The global minimum y* = 1 is attained 
at x* = (0.9, , . . ,0.9). Display the graph and density plot of this function and give a table 
for the evolution of the algorithm. 

8.21 A well-known test case in continuous optimization is the Rosenbrock function (in n 
dimensions): 

n-1 

S(X) = c 100 (Li+l - L y  + (Xi - 1 ) 2  . 

The function has a global minimum y* = 0, attained at x* = (1,1,. . . ,1). Implement a 
CE algorithm to minimize this function for dimensions n = 2,5,10,  and 20. Observe how 
injection (Remark 8.7.1) affects the accuracy and speed of the algorithm. 

(8.51) 
i=l 
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8.22 Suppose that 2- in (8.15) is a (possibly nonlinear) region defined by the following 
system of inequalities: 

G i ( x )  < 0, i = l , . .  . , L .  (8.52) 

The proportional penalty approach to constrained optimization is to modify the objective 
function as follows: 

L 

(8.53) 

where Pt(x) = C, max(G,(x), 0) and C, > 0 measures the importance (cost) of the i-th 
penalty. It is clear that as soon as the constrained problem (8.15), (8.52) is reduced to the 
unconstrained one (8.15) - using (8.53) instead of S - we can again apply Algorithm 
8.3.1. 

Apply the proportional penalty approach to the constrained minimization of the Rosen- 
brock function of dimension 10 for the constraints below. List for each case the minimal 
value obtained by the CE algorithm (with injection, if necessary) and the CPU time. In all 
experiments, use E = 10W3 for the stopping criterion (stop if all standard deviations are 
less than E )  and C = 1000. Repeat the experiments 10 times to check if indeed a global 
minimum is found. 

a) c;:,x, < -8 

b) C,& 3 15 
10 

10 
C) C,=lx,  < -8, C;"xZj2 3 15 

d) Z::, z, 2 15, 2: < 22.5 

8.23 Use the CE method to minimize the function 

s(x) = 1000 - 2: - 22; - 2; - 5 1 2 2  - 5123 , 

subject to the constraints xJ 2 0, j = 1,2,3,  and 

8 2 1 + 1 4 2 2 + 7 2 3 - 5 6  = 0 ,  
z : + z ; + z ; - 2 5  = 0 .  

First, eliminate two of the variables by expressing 2 2  and 23  in terms of 21. Note that 
this gives two different expressions for the pair ( 5 2 , ~ ) .  In the CE algorithm, generate the 
samples X by first drawing X I  according to a truncated normal distribution on [0,5]. Then 
choose either the first or the second expression for (X2, X3) with equal probability. Verify 
that the optimal solution is approximately x* = (3.51,0.217,3.55), with S(x*) = 961.7. 
Give the solution and the optimal value in seven significant digits. 

8.24 Add U(-O.l, 0 l), N(O,O.Ol), and N(0,l) noise to the objective function in Prob- 
lem 8.19. Formulate an appropriate stopping criterion, for example based on Z t .  For each 
case, observe how T t ,  B t ,  and Z t  behave. 

8.25 Add N(0 , l )  noise to the Matlab peaks function and apply the CE algorithm to find 
the global maximum. Display the contour plot and the path followed by the mean vectors 
{&}, starting with Go = (1.3, -2.7) and using N = 200 and e = 0.1. Stop when all 
standard deviations are less than E = In a separate plot, display the evolution of the 
worst and best of the elite samples (Tt and S;)  at each iteration of the CE algorithm. In 
addition, evaluate and plot the noisy objective function in & for each iteration. Observe 
that in contrast to the deterministic case, the { T t }  and { S t }  d o  not converge to y* because 
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of the noise, but eventually S(j2,) fluctuates around the optimum y*. More importantly, 
observe that the means { F i t }  do converge to the optimal x*. 

8.26 Select a particular instance (cost matrix) of the synthetic TSP in Problem 8.10. 
Make this TSP noisy by defining the random cost x j  from i to j in (8.48) to be Exp(cG1) 
distributed. Apply the CE Algorithm 8.3.1 to the noisy problem and compare the results 
with those in the deterministic case. Display the evolution of the algorithm in a graph, 
plotting the maximum distance, maxi,j I& - p&l, as a function o f t .  

Further Reading 

The CE method was pioneered in [26] as an adaptive algorithm for estimating probabilities 
of rare events in complex stochastic networks. Originally it was based on variance mini- 
mization. It was soon realized [27,28] that the same technique (using CE rather than VM) 
could be used not only for estimation but also for optimization purposes. 

A gentle tutorial on the CE method is given in [8] and a more comprehensive treatment can 
be found in [3 11. In 2005 a whole volume (1 34) of the Annals ofOperations Research was 
devoted to the CE method. The CE home page, featuring many links, articles, references, 
tutorials, and computer programs on CE, can be found at 

h t t p : / / w w . c e m e t h o d . o r g  

The CE method has applications in many areas, including buffer allocation [ 11, queueing 
models of telecommunication systems [7, 93, control and navigation [ 101, signal detection 
[ 181, DNA sequence alignment [ 121, scheduling and vehicle routing [4], reinforcement 
learning [19, 221, project management [5] and heavy-tail distributions [2], [ 161. Applica- 
tions to more classical combinatorial optimization problems are given in [28], [29], and 
[30]. The continuous counterpart is discussed in [ 151, and applications to clustering anal- 
ysis are given in [3] and [ 171. Various CE estimation and noisy optimization problems for 
reliability systems and network design can be found in [ 1 I], [13], [ 141, [23], [24], and [25]. 
Convergence issues are discussed in [6], [21], and Section 3.5 of [31]. 

An approach closely related to CE is theprobability collectives work of Dr. David Wolpert 
and his collaborators. This approach uses information theory as a bridge to relate game 
theory, statistical physics, and distributed optimization; see, for example, [33, 341. 
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CHAPTER 9 

COUNTING VIA MONTE CARL0 

9.1 COUNTING PROBLEMS 

Many important problems in science, engineering, and mathematics deal with counting 
problems that are #P-complete [22,23,30]. This is a concept related to the familiar class 
of NP-hard problems. Here are some examples of #P-complete counting problems: 

0 The Hamiltonian cycle counting problem. How many Hamiltonian cycles exist in a 
given graph? That is, how many different tours (cycles) does the graph contain that 
visit each node (vertex) exactly once, apart for the beginning/end node? Note that 
the problem of finding a particular Hamiltonian cycle is a special case of the TSP in 
which the distances between adjacent nodes are 1 ,  and other distances are 0, and the 
objective is to find the longest tour. 

0 The self-avoiding walk problem. How many walks are there of a certain length n 
that, starting from the origin, move between the nearest grid points and d o  not visit 
the same grid point more than once? 

0 The satisjability (SAT) counting problem. Let {XI, . . . , xn} be a collection of n 
Boolean variables. Let C be a set of Boolean clauses. Examples of such clauses are 
z1 V 52 and (z1 V 2 2 )  A (?I V Q). How many (if any) satisfying truth assignments 
for C exist? That is, how many ways are there to set the variables 21, . . . , z, either 
true or false so that each clause in C is true? 
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Some other #P-complete problems include counting the number of perfect matches in a 
bipartite graph, determining the permanent of a matrix, counting the number of fixed-size 
cliques in a graph, and counting the number of forests in a graph. 

It is interesting to note [23,30] that in many cases the counting problem is hard to solve, 
while the associated decision or optimization problem is easy; in other words, decision is 
easy, counting is hard. For example, finding the shortest path between two fixed vertices in 
a graph is easy, while finding the total number of paths between the two vertices is difficult. 

In this chapter we show how #P-complete counting problems can be viewed as particular 
instances o f  estimation problems, and as such can be solved efficiently using Monte Carlo 
techniques, such as importance sampling and MCMC. We also show that when using the 
standard CE method to estimate adaptively the optimal importance sampling density, one 
can encounter degeneracy in the likelihood ratio, which leads to highly variable estimates for 
large-dimensional problems. We solve this problem by introducing a particular modification 
of the classic MinxEnt method [17], called the parametric MinxEnt (PME) method. We 
show that PME is able to overcome the curse of the dimensionality (degeneracy) of the 
likelihood ratio by decomposing it into low-dimensional parts. Much of the theory is 
illustrated via the satisfiability counting problem in the conjunctive normal form (CNF), 
which plays a central role in NP completeness. We also present here a different approach, 
which is based on sequential sampling. The idea is to break a difficult counting problem into 
a combination of easier ones. In particular, for the SAT problem in the disjunctive normal 
form (DNF), we design an importance sampling algorithm and show that it possesses nice 
complexity properties. 

Although #P-complete problems, and in particular SAT, are of both theoretical and 
practical importance and have been well studied for at least a quarter of a century, we are 
not aware of any generic deterministic or randomized method forfast counting for such 
problems. We are not even aware of any benchmark problems to which our method can be 
compared. One goal of this chapter is therefore to motivate more research and applications 
on #P-complete problems, as the original CE method did in the fields of Monte Carlo 
simulation and simulation-based optimization in recent years. 

The rest of this chapter is organized as follows. Section 9.2 introduces the SAT counting 
problem. In Section 9.3 we show how a counting problem can be reduced to a rare-event 
estimation one. In Section 9.4 we consider a sequential sampling plan, where a difficult 
counting problem I X* I can be presented as a combination of associated easy ones. Based 
on the above sequential sampling we design an efficient importance sampling algorithm. 
We show that for the SAT problem in the DNF form the proposed algorithm possesses 
nice complexity properties. Section 9.5 deals with SAT counting in the CNF form, using 
the rare-event approach developed in Section 9.3. In particular, we design an algorithm, 
called the PME algorithm, which is based on a combination of importance sampling and 
the classic MinxEnt method. In Section 9.6 we show that the PME method can be applied 
to combinatorial optimization problems as well and can be viewed as an alternative to the 
standard CE method. The efficiency of the PME method is demonstrated numerically in 
Section 9.7. In particular, we show that PME works at least as well as the standard CE 
for combinatorial optimization problems and substantially outperforms the latter for SAT 
counting problems. 

9.2 SATlSFlABlLlTY PROBLEM 

The Boolean satisfiability (SAT) problem plays a central role in combinatorial optimization 
and, in particular, in NP completeness. Any NP-complete problem, such as the max-cut 
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problem, the graph-coloring problem, and the TSP, can be translated in polynomial time into 
a SAT problem. The SAT problem plays a central role in solving large-scale computational 
problems, such as planning and scheduling, integrated circuit design, computer architecture 
design, computer graphics, image processing, and finding the folding state of a protein. 

There are different formulations for the SAT problem, but the most common one, which 
we discuss next, consists of two components [ 121: 

0 A set of n Boolean variables (21, . . . , zn}, representing statements that can either be 
TRUE (=1) or FALSE (=O). The negation (the logical NOT) of a variable 2 is denoted 
by 5. For example, = FALSE. A variable or its negation is called a literal. 

0 A set of m distinct clauses { C1, Cz, . . . , Cm} of the form Ci = zil V Z i z  V . . . V zik 

where the z’s are literals and the V denotes the logical OR operator. For example, 
O V l = l .  

The binary vector x = (21, . . . , 2,) is called a truth assignment, or simply an assign- 
ment. Thus, zi = 1 assigns truth to xi and xi = 0 assigns truth to Zi for each i = 1, . . . , n. 
The simplest SAT problem can now be formulated as: find a truth assignment x such that 
all clauses are true. 

Denoting the logical AND operator by A, we can represent the above SAT problem via a 
single formula as 

F1 = C1 A C 2  A . . -  

where the { C k }  consist of literals connected with only V operators. The SAT formula is 
said to be in conjunctive normal form (CNF). An alternative SAT formulation concerns 
formulas of the type 

Fz = C1 V C2 V . . .  V C, , 

where the clauses are of the form Ci = zil A ziz A . . . A zik. Such a SAT problem is then 
said to be in disjunctive normal form (DNF). In this case, a truth assignment x is sought 
that satisfies at least one of the clauses, which is usually a much simpler problem. 

EXAMPLE9.1 

As an illustration of the SAT problem and the corresponding SAT counting problem, 
consider the following toy example of coloring the nodes of the graph in Figure 9.1. Is 
it possible to color the nodes either black or  white in such a way that no two adjacent 
nodes have the same color? If so, how many such colorings are there? 

3 

Figure 9.1 
color? 

Can the graph be colored with two colors so that no two adjacent nodes have the same 
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We can translate this graph coloring problem into a SAT problem in the following 
way: Let x3 be the Boolean variable representing the statement “the j-th node is 
colored black”. Obviously, x3 is either TRUE or FALSE, and we wish to assign truth 
to either x3 or T 3 ,  for each j = 1, . . . ,5. The restriction that adjacent nodes cannot 
have the same color can be translated into a number of clauses that must all hold. 
For example, “node 1 and node 3 cannot both be black” can be translated as clause 
C1 = :1 V T3. Similarly, the statement “at least one of node 1 and node 2 must be 
black” is translated as C2 = 51 V 23. The same holds for all other pairs of adjacent 
nodes. The clauses can now be conveniently summarized as in Table 9.1. Here, in 
the left-hand table, for each clause C, a 1 in column j means that the clause contains 
x3, a - 1 means that the clause contains the negation Tj; and a 0 means that the clause 
does not contain either of them. Let us call the corresponding matrix A = (atj) the 
clause matrix. For example, a75 = - 1 and a42 = 0. An alternative representation 
of the clause matrix is to list for each clause only the indices of all Boolean variables 
present in that clause. In addition, each index that corresponds to a negation of a 
variable is preceded by a minus sign; see Table 9.1. 

Table 9.1 A SAT table and an alternative representation of the clause matrix. 

1 2 3 4 5  
0 1 0 1 0  

-1 0 -1 0 0 
1 0 1 0 0  

-1 0 0 0 -1 
1 0 0 0 1  
0 -1 -1 0 0 
0 1 1 0 0  
0 -1 0 0 -1 
0 1 0 0 1  
0 0 -1 -1 0 
0 0 1 1 0  
0 0 0 -1 -1 
0 0 0 1 1  

-1 -3 
1 3  

-1 -5 
1 5  

-2  -3 
2 3  

-2 -5 
2 5  

-3 -4 
3 4  

-4 -5 
4 5  

Now let x = (zl, . . . 55) be a truth assignment. The question is whether there 
exists an x such that all clauses { C k }  are satisfied. To see if a single clause ck is 
satisfied, one must compare the truth assignment for each variable in that clause with 
the values l,-l, and 0 in the clause matrix A,  which indicates if the literal corresponds 
to the variable, its negation, or that neither appears in the clause. If, for example, 
z3 = 0 and at3 = -1, then the literal Z3 is TRUE. The entire clause is TRUE if it 
contains at least one true literal. Define the clause value C,(x) = 1 if clause C, is 
TRUE with truth assignment x and C,(x) = 0 if it is FALSE. Then it is easy to see that 

G(x) = max(0, (2 z3 - 1) arj 1 , (9.1) 
3 

assuming that at least one a,3 is nonzero for clause C, (otherwise, the clause can be 
deleted). For example, for truth assignment (0,1,0,1,0) the corresponding clause 
values are given in the rightmost column of the lefthand table in Table 9.1. We see that 
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the second and fourth clauses are violated. However, the assignment (1 , 1, 0, 1 , O )  
does indeed yield all clauses true, and this therefore gives a way in which the nodes 
can be colored: 1 =black, 2 = black, 3 = white, 4 = black, 5 = white. It is easy to see 
that (0, 0,1,0,1) is the only other assignment that renders all the clauses true. 
The problem of deciding whether there exists a valid assignment, and indeed providing 

such a vector, is called the SAT-assignment problem [2 11. Finding a coloring in Example 9.1 
is a particular instance of the SATassignment problem. A SAT-assignment problem in which 
each clause contains exactly K literals is called a K-SATproblem. It is well known that 
2-SAT problems are easy (can be solved in polynomial time), while K-SAT problems for 
K 2 3 are NP-hard. A more difficult problem is to find the maximum number of clauses 
that can be satisfied by one truth assignment. This is called the MAX-SATproblem. Recall 
that our ultimate goal is counting rather than decision making, that is, to find how many 
truth assignments exist that satisfy a given set of clauses. 

9.2.1 Random K-SAT (K-RSAT) 

Although K-SATcounting problems for K 2 2 are NP-hard, numerical studies nevertheless 
indicate that most K-SAT problems are easy to solve for certain values of n and m. To study 
this phenomena, MCzard and Montanari [21] define a family of random K-SAT problems, 
which we denoteby K-RSAT(m, n). Each instance of a K-RSAT(m, n) contains m clauses 
of length K corresponding to n variables. Each clause is drawn uniformly from the set of 
(E) 2 clauses, independently of the other clauses. It has been observed empirically that 
a crucial parameter characterizing this problem is 

(9.2) 
m 
n 

p = - ,  

which is called the clause densiv. 
Denote by P(n,  K, 0) the probability that a randomly generated SAT instance is satis- 

fiable. Figure 9.2, adapted from [ 1 I], shows P(n, 3, p) as a function of p for n = 50, 100, 
and 200 (the larger the n, the steeper the curve). 

1 

0.8 

0.6 

0.4 

0.2 

n 
3 3.5 4 4.5 5 5.5 6 6.5 7 

Figure 9.2 
density f l  for n = 50,100, and 200. 

The probability that a K-RSAT(m, n) problem has a solution as a function of the clause 
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One can see that for fixed 7~ this is a decreasing function of 0. It starts from 1 for p = 0 
and goes to 0 as p goes to infinity. An interesting observation from these simulation studies 
is the existence of aphase  transition at some finite value p*, in the sense that for p < p* 
K-RSAT(m, n) is satisfied with probability P(n,  K ,  a) + 1 as n -+ 00, while for /3 > p* 
the same probability goes to 0 as n -+ m. For example, it has been found empirically that 
,6* zz 4.26 for K = 3. Similar behavior of P(n,  K ,  p) has been observed for other values 
of K .  In particular, it has been found empirically that for fixed n, p* increases in K and 
the crossover from high to low probabilities becomes sharper and sharper as n increases. 
Moreover, it is proved rigorously in [21] that 

1 i f p  < 1, 
0 i f p > 1 .  

1. For 2-RSAT(nP, n): limn.+m P(n,  2, a) = 

2. For K-RSAT(nP, n)  , K 2 3, there exist a p' = P*(K) ,  such that 

1 i f p < p * ,  
0 i f p > , B * .  

lim P(n,  K ,  p)  = 
n-+m 

Finally, It has been shown empirically in [21] that for fixed n and K the computational 
effort needed to solve the random K-SAT problem has a peak at the vicinity of the point 
p' and the value of the peak increases rapidly in n. 

One thus distinguishes the following three regions for K-RSAT(np, n): 

1. For small p, the problem of finding a solution is easy and the CPU time grows 
polynomial in n. 

2.  At the phase transition region (near p*), the problem (finding a solution or show- 
ing that a solution does not exist) becomes hard and the CPU time typically grows 
exponential in n. 

3. For p > p' the problem becomes easier but still requires exponential time. In this 
region there is likely to be no solution; the objective is therefore to show efficiently 
that the problem is UNSAT. 

It follows that hardest instances of the random SATare located around the phase transition 
region (the vicinity of p'). In our numerical studies below, we shall present the performance 
of the PME algorithm for such hard instances while treating the SAT counting problem. 

9.3 THE RARE-EVENT FRAMEWORK FOR COUNTING 

We start with the fundamentals of the Monte Carlo method for estimation and counting by 
considering the following basic example. 

EXAMPLEU 

Suppose we want to calculate an area of some irregular region X *. The Monte Carlo 
method suggests inserting the irregular region X' into a nice regular one Z, say a 
rectangle (see Figure 9.3), and then applying the following estimation procedure: 
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1. Generate a random sample XI, . . . , XN uniformly distributed over the regular region 
x. 

2.  Estimate the desired area I X* I as 

where l { ~ , ~ % - . )  denotestheindicatoroftheevent (xk E x*}. Notethataccording 
to (9.3) we accept the generated point XI, if Xk 6 %* and reject it otherwise. 

Figure 9.3 Illustration of the acceptance-rejection method. 

Formula (9.3) is also valid for countingproblems, that is, when X* is a discrete rather 
than a continuous set of points. In this case, one generates a uniform sample over the grid 
points of some larger nice region X * and then, as before, uses the acceptance-rejection 
method to estimate 1 X'I . 

Since in most interesting counting problems {xk E %*} is a rare event we shall use 
importance sampling, because the acceptance-rejection method is meaningless in this case. 
Let g be an importance sampling pdf defined on some set X and let X * c X; then 1 X * I 
can be written as 

To estimate I X* I via Monte Carlo, we draw a random sample XI, . . . , XN from g and 
take the estimator 

Thebestchoiceforgisg*(x) = l/l%*[, x E X*;inotherwords,g ' (x)  is theuniform 
pdf over the discrete set 9"'. Under g* the estimator has zero variance, so that only one 
sample is required. Clearly, such g* is infeasible. However, for various counting problems 
a natural choice for g presents itself, as illustrated in the following example. 

EXAMPLE 9.3 Self-Avoiding Walk 

The self-avoiding random walk, or simply self-avoiding walk, is a basic mathematical 
model for polymerchains. For simplicity we shall deal only with the two-dimensional 
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case. Each self-avoiding walk is represented by a path x = (x1,22, . . . , xn-l, G,), 
where zi represents the two-dimensional position of the i-th molecule of the polymer 
chain. The distance between adjacent molecules is fixed at 1, and the main require- 
ment is that the chain does not self-intersect. We assume that the walk starts at the 
origin. An example of a self-avoiding walk walk of length 130 is given in Figure 9.4. 

-10 - 

-15 - 

-20 
0 5 10 15 20 

Figure 9.4 A self-avoiding random walk of length n = 130. 

One of the main questions regarding the self-avoiding walk model is: how many 
self-avoiding walks are there of length n? Let A?* be the set of self-avoiding walks 
of length n. We wish to estimate JX'I via (9.5) by employing a convenient pdf g(x). 
This pdf is defined by the following one-step-look-ahead procedure. 

Procedure (One-Step-Look-Ahead) 

1. Let X O  = (0,O). Set t = 1. 

2.  Let dt be the number of neighbors of Xt- l  that have not yet been visited. If dt > 0, 
choose X t  with probability l / d t  from its neighbors. If dt = 0, stop generating the 
path. 

3. Stop if t = n. Otherwise, increase t by 1 and go to Step 2. 

Note that the procedure generates either a self-avoiding walk x of length n or a 
part thereof. Let g(x) be the corresponding discrete pdf. Then, for any self-avoiding 
walk x of length n, we have by the product rule (1.4) 

where 
w(x) = d l  . ' ' d, 
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The self-avoiding walk counting algorithm now follows directly from (9.5). 

Algorithm 9.3.1 (Counting Self-Avoiding Walks) 

1. Generate independently N paths XI, . . . , X N  via the one-step-look-aheadproce- 
dure. 

2. For each self-avoiding walk Xk, compute the corresponding w(&) as in (9.6). For 
the otherpaths, set W(&) = 0. 

3. Return 

The efficiency of the simple one-step-look-ahead method deteriorates rapidly as n 
becomes large. It becomes impractical to simulate walks of length more than 200. 
This is due to the fact that if at any one step t the point q - 1  does not have unoccupied 
neighbors (d t  = 0), then the “weight” w(x) is zero and contributes nothing to the 
final estimate of I Z* I. This problem can occur early in the simulation, rendering any 
subsequent sequential build-up useless. Better-performing algorithms do not restart 
from scratch but reuse successful partial walks to build new walks. These methods 
usually split the self avoiding partial walks into a number of copies and continue them 
as if they were independently built up from scratch. We refer to [20] for a discussion 
of these more advanced algorithms. 

In general, choosing the importance sampling pdf g close to g* to yield a good (low- 
variance) estimator for IZ*( may not be straightforward. However, there are several dif- 
ferent approaches for constructing such low-variance pdfs. Among them are the standard 
CE, exponential change of measure (ECM), and the celebrated MinxEnt method [ 171. Here 
we shall us a particular modification of the MinxEnt method called the PME method and 
show numerically that for the SAT problem it outperforms substantially the standard CE 
approach. 

9.3.1 Rare Events for the Satisfiability Problem 

Next, we demonstrate how to reduce the calculation of the number of SAT assignments 
to the estimation of rare-event probabilities. Let A = ( a i j )  be a general m x n clause 
matrix representing the variables or negations thereof that occur in the clauses. Consider, 
for example, the 3 x 5 clause matrix in Table 9.2. 

Table 9.2 A clause matrix with five clauses for three variables. 

-1 
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Thus, aik = 1 and ( I i k  = -1 correspond to literals and negations, respectively; the 0 in 
cell (1,3) means that neither the third variable nor its negation occur at clause C1. For any 
truth assignment x = ( 2 1 , .  . . , n), let Ci(x) be 1 if the i-th clause is TRUE for assignment 
x and 0 otherwise, i = 1, . . . , rn. Thus, the Ci(x) can be computed via (9.1). Next, define 

i= 1 

Table 9.3 presents the eight possible assignment vectors and the corresponding values of 
S(x) for the clause matrix in Table 9.2. 

Table 9.3 The eight assignment vectors and the corresponding values of S(x). 

Recall that our goal is to find, for a given set of n Boolean variables and a set of 712 

clauses, how many truth assignments exist that satisfy all the clauses. If we call the set 
of all 2n truth assignments % and denote the subset of those assignments that satisfy all 
clauses by X’, then our objective is to count I X *  1. It is readily seen from Table 9.3 that the 
clauses are simultaneously satisfied for four assignments, each corresponding to S(x) = 5 .  
Thus, in this case /%*I = 4. 

The connection with rare-event simulation is the following. Let 

- P,“(X E 2’) = PP“(S(X) = rn) , IX’I 
1x1 I =  - - (9.8) 

where pu denotes the “uniform” probability vector ( 1 / 2 , .  . . , 1 / 2 ) .  In other words, .t in 
(9.8) is the probability that a uniformly generated SAT assignment (trajectory) X is valid, 
that is, all clauses are satisfied, which is typically very small. We have thus reduced the SAT 
counting problem to a problem involving the estimation of a rare-event probability, and we 
can proceed directly with updating the probability vector p in order to estimate efficiently 
the probability e ,  and thus also the number of valid trajectories 1 E * I. 

9.4 OTHER RANDOMIZED ALGORITHMS FOR COUNTING 

In the previous section we explained how Monte Carlo algorithms can be used for counting 
using the importance sampling estimator (9.5). In this section we look at some alternatives. 
In particular, we consider a sequential sampling plan, where the difficult problem of counting 
I X *  I is decomposed into “easy” problems of counting the number of elements in a sequence 
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of related sets X I , .  . . , X,. A typical procedure for such a decomposition can be written 
as follows: 

1. Formulate the counting problem as the problem of estimating the cardinality of some 
set X’. 

2. Find sets Xo, Xl,. . . , Xm such that IXml = I%’\ and lXol is known. 

3. Write IX*( = IXml as 

(9.9) 

4. Develop an efficient estimator ?j3 for each qj = I Xj I / I %, - 1 1 , resulting in an efficient 
estimator, 

(9.10) 

Algorithms such as based on the sequential sampling estimator (9.10) are sometimes called 
randomized algorithms in the computer literature [22]. We will refer to the notion of a 
randomized algorithm as an algorithm that introduces randomness during its execution. In 
particular, the standard CE and the PME algorithm below can be viewed as examples of 
randomized algorithms. 

Remark 9.4.1 (Uniform Sampling) Finding an efficient estimator for each qj = 
IXjI/lXj-lI is the crux of the counting problem. A very simple and powerful idea is 
to obtain such an estimator by sampling uniformly from the set gj = Xj-1 U %j. By 
doing so, one can simply take the proportion of samples from gj that fall in Xj as the 
estimator for vj. For such an estimator to be efficient (have low variance), the subset Xj 
must be relatively “dense” in q. In other words rlj should not be too small. 

is difficult or impos- 
sible, one can resort to approximate sampling, for example via the Metropolis-Hastings 
Algorithm 6.2.1 ; see in particular Example 6.2. 

If exact sampling from the uniform distribution on some set 

It is shown in [22] and [23] that many interesting counting problems can be put into the 
setting (9.9). In fact, the CNF SAT counting problem in Section 9.3.1 can be formulated 
in this way. Here the objective is to estimate I%* /  = 1x1 jX*l/l%( = 1x1 e, where 
1 .XI is known and t can be estimated via importance sampling. Below we give some more 
examples. 

EXAMPLE 9.4 Independent Sets 

Consider a graph G = (V, E )  with m edges and n vertices. Our goal is to count 
the number of independent node (vertex) sets of the graph. A node set is called 
independent if no two nodes are connected by an edge, that is, if no two nodes are 
adjacent; see Figure 9.5 for an illustration of this concept. 
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Figure 9.5 The black nodes form an independent set, since they are not adjacent to each other. 

Consider an arbitrary ordering of the edges. Let Ej  be the set of the first j edges 
and let Gj = (V, Ej )  be the associated subgraph. Note that G, = G and that Gj is 
obtained from G,+l by removing an edge. Denoting Xj the set of independent sets 
of Gj,  we can write 1X.I = IX,l in the form (9.9). Here lX0l = 2n,  since Go has 
no edges and thus every subset of V is an independent set, including the empty set. 
Note that here Xo 3 Xl 3 . . . 3 X, = X*. 

EXAMPLE 9.5 Knapsack Problem 

Given items of sizes a.1, . . . , a ,  > 0 and a positive integer b > mini ai, find the 
number of vectors x = ( X I , .  . . ,x,) E (0 , l ) "  such that 

n 

The integer b represents the size of the knapsack, and xi indicates whether or not 
item i is put in the knapsack. Let X* denote the set of all feasible solutions, that 
is, all different combinations of items that can be placed into the knapsack without 
exceeding its size. The goal is to determine IX'I. 

To put the knapsack problem into the framework (9.9). assume without loss of 
generality that a1 < a2 < . . . < a, and define bj  = Cz=, a,, with bo = 0. Denote 
X3 the set of vectors x that satisfy C:=, ai xi  < b j ,  and let m be the largest integer 
such that b, ,< b. Clearly, X, = X'. Thus, (9.9) is established again. 

EXAMPLE 9.6 Counting the Permanent 

The permanent of a general n x n matrix A = (a,ij) is defined as 
n 

(9.1 1) 
X C Z  i=l 

where X is the set of all permutations x = (51,. . . , x,) of (1,. . . , n). It is well 
known that the calculation of the permanent of a binary matrix is equivalent to the 
calculation of the number of perfect matchings in a certain bipartite graph. A bipartite 
graph G = (V, E )  is a graph in which the node set V is the union of two disjoint sets 
V, and V2, and in which each edge joins a node in V1 to a node in V2. A matching o f  
size m is a collection of m edges in which each node occurs at most once. A perJfect 
matching is a matching of size n. 
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To see the relation between the permanent of a binary matrix A = ( a i j )  and the 
number of perfect matchings in a graph, consider the bipartite graph G, where Vl and 
V2 are disjoint copies of { 1, . . . , n}  and ( 2 ,  j) E E if and only if ail = 1 for all i and 
j .  As an example, let A be the 3 x 3 matrix 

1 1 1  
A = ( :  y ) .  (9.12) 

The corresponding bipartite graph is given in Figure 9.6. The graph has three per- 
fect matchings, one of which is displayed in the figure. These correspond to all 
permutations x for which the product n;=, aiz, is equal to 1. 

3 4 L  3' 

Figure 9.6 A bipartite graph. The bold edges form a perfect matching. 

For a general binary (n  x n) matrix A, let Xj denote the set of matchings of 
size j in the corresponding bipartite graph G. Assume that Xn is nonempty, so 
that G has a perfect matching of nodes Vl and V2. We are interested in calculating 
/.%,I = per(A). Taking into account that 1x11 = /El, we obtain the product form 
(9.9). 

As a final application of (9.9), we consider the general problem of counting the number 
of elements in the union of some sets XI, . . . X,. 

9.4.1 %* is a Union of Some Sets 

Let, as usual, X be a finite set of objects, and let X* denote a subset of special objects 
that we wish to count. In specific applications X* frequently can be written as the union 
of some sets XI, . . . , X,, as illustrated in Figure 9.7. 

z 
0 

0 

0 

0 

0 

I 

Figure 9.7 Count the number of points in the gray set %*. 
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As a special case we shall consider the counting problem for a SAT in DNF. Recall 
that a DNF formula is a disjunction (logical OR) of clauses C1 V C2 V . . . V C,, where 
each clause is a conjunction (logical AND) of literals. Let X be the set of all assignments, 
and let X, be the subset of all assignments satisfying clause C,, j = 1, . . . , m. Denote 
by X' the set of assignments satisfying at least one of the clauses C1, . . . , C,, that is, 
X* = UF1 X,. The DNF counting problem is to compute 1 X'I. It is readily seen that if 
a clause C, has nJ literals, then the number of true assignments is 1 XJ I = 2n-nl. Clearly, 
0 5 I %*I  5 1 XI = 2" and, because an assignment can satisfy more than one clause, also 

Next, we shall show how to construct a randomized algorithm for this #P-complete 
problem. The first step is to augment the state space X with an index set {l, . . . , m}. 
Specifically, define 

d =  {(j,x) :x E X,, j = 1 , . . . ,  m } .  (9.13) 

This set is illustrated in Figure 9.8. In this case we have m = 7, 1x1 I = 3, IXzl = 2, and 
so on. 

IX'I G Cjn=l IEJI. 

1 

2 

3 

j 

1 :  
m 

Figure 9.8 The sets d (formed by all points) and a'* (formed by the black points). 

For a fixed j we can identify the subset a ' j  = {(j,x) : x E X;} of a' with the set 
Xj. In particular, the two sets have the same number of elements. Next, we construct a 
subset d* of d with size exactly equal to (%*(. This is done by associating with each 
assignment in X' exactly one pair ( j ,  x) in a'. In particular, we can use the pair with the 
smallest clause index number, that is, we can define a'* as 

d * = { ( j , x ) : x ~ X ~ , x $ X j  for k < j , j = 1 ,  . . . ,  m} 

In Figure 9.8 d* is represented by the black points. Note that each element of X' is 
represented once in a', that is, each "column" has exactly one black point. 

Since Id/ = C,"=, IX,l = Cy=l 2n-nj is available, we can estimate IK*I = la'*/ = 
/dl l by estimating l = \a'*\/\d\. Note that this is a simple application of (9.9). The 
ratio e can be estimated by generating pairs uniformly in d and counting how often they 
occur in d*. It turns out that for the union of sets, and in particular for the DNF problem, 
generating pairs uniformly in a' is quite straightforward and can bedone in two stages using 
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the composition method. Namely, first choose an index j, j = 1,. . . , m with probability 

next, choose an assignment x uniformly from Xj. This can be done by choosing a value 
1 or 0 with equal probability and independently for each literal that is not in clause j .  The 
resulting probability of choosing the pair ( j ,  x) can be found via conditioning as 

I41 1 1 

Id1 I41 14 ' 
P(J = j,x = x) = P(J = j )P(X = x (  J = j )  = - - = - 

which corresponds to the uniform distribution on d.  The DNF counting algorithm can be 
written as follows [22] 

Algorithm 9.4.1 (DNF Counting Algorithm) 

Given is a DNF formula with m clauses and n literals. 

I .  Let Z = 0. 

2. Fork = 1 to N :  

i. With probability p j  0: I Xj 1, choose unformly and randomly an assignment 

ii. r f X  is not in any xi for i < j ,  increase Z by I. 

x E xj. 

3.  Return 

(9.14) 

as the estimate of the number 1 X* 1 of satisfying assignments. 

Note that the ratio ! = 1d*1/1d1 can be written as 

where the subscript U indicates that A is drawn uniformly over d .  Algorithm 9.4.1 counts 
the quantity 6 (an estimator of l), representing the ratio of the number of accepted samples 
2 to the total generated N ,  and then it multiplies $ by the constant c,"=, IXj( = Idl. 
Note also that Algorithm 9.4.1 can be applied to some other problems involving the union 
of quite arbitrary sets X,, j = 1,. . . , m. 

Next, we present an alternative estimation procedure for e in (9.15). Conditioning on 
X, we obtain by the conditioning property (1.1 1): 

where p ( X )  = P u ( Z ~ A ~ ~ . }  I X) is the conditional probability that a uniformly chosen 
A = ( J ,  X) falls in set d*, given X. For a given element x E .X*, let r ( x )  denote the 
number of sets .Xj to which x belongs. For example, in Figure 9.8 the values for T(X) 
from left to right are 2, 1 ,  2, 2, 3, 1 , .  . . . Given a particular x ,  the probability that the 
corresponding ( J ,  x) lies in d* - in the figure, this means that the corresponding point in 
the columncorresponding to x i s  black- is simply l/r(x), because each of the T(X) points 
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is chosen uniformly and there is only one representative of a’* in each column. In other 
words, p(X) = l/r(X). Hence, if r(x) can be calculated for each x, one can estimate 
e = Eu[l/r(X)] as Y / N ,  with Y = xr=l &. By doing so, we obtain the estimator 

(9.16) 

Note that in contrast to (9.14) the estimator in (9.16) avoids the acceptance-rejection step. 
Both I@? and are unbiased estimators of I%*/ ,  but the latter has the smaller vari- 
ance of the two, because i t  is obtained by conditioning; see the conditional Monte Carlo 
Algorithm 5.4.1. 

Both IX*l and IZ* I  can be viewed as importance sampling estimators of the form 
(9.4). We shall show it for the latter. Namely, let g(x) = T(x)/c, x E X’, where c is 
a normalization constant, that is, c = CxEz.  T ( X )  = EL, /Xi/. Then, applying (9 .3 ,  
with d* and d instead of X’ and X, gives the estimator 

- 

- 
which is exactly I X* I. As mentioned, sampling from the importance sampling pdf g(x) is 
done via the composition method without explicitly resorting to T(x). Namely, by selecting 
( J ,  X) uniformly over d, we have 

T(X) P(X = x) = - = g(x), x E X* 
1-4 

We shall show below that the DNF Counting Algorithm 9.4.1 possesses some nice com- 
plexity properties. 

9.4.2 Complexity of Randomized Algorithms: FPRAS and FPAUS 

A randomized algorithm is said to give an ( E ,  6)-upproximution of a parameter z if its output 
2 satisfies 

P(lZ - 21 < €2) 2 1 - 6 ,  (9.17) 

that is, the “relative error” 12 - z I / z  of the approximation Z lies with high probability 
(> 1 - 6) below some small number E. 

One of the main tools in proving (9.17) for various randomized algorithms is the so-called 
Chernoffbound, which states that for any random variable Y and any number a 

P(Y < a) < mineea ~ [ e - ’ ~ ]  . (9.18) 

Namely, for any fixed a and 0 > 0, define the functions H l ( z )  = I { z ( a )  and H ~ ( z )  = 
es(a-z). Then, clearly, H l ( z )  < H~(z) for all z .  As a consequence, for any 8, 

0>0  

P(Y < a,) = E [ H ~ ( Y ) ]  < E [ H ~ ( Y ) ]  = eea i ~ [ e - ~ ~ ]  . 

The bound (9.18) now follows by taking the smallest such 8. An important application is 
the following. 
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Theorem 9.4.1 Let XI, . . . , X,, be iid Ber(p) random variables. Then their sample mean 
provides an ( E ,  6)-approximation for p, that is, 

(9.19) 

provided that n 2 3 l n ( 2 / 6 ) / ( p ~ ~ ) .  

Proof 
IE[e-BX1]n = (1 - p + pee),,, the Chemoff bound gives 

Let Y = X I  + . . .  + X,, and l ? ~  = P(Y < (1 - ~ ) n p ) .  Because E[e-eY] = 

eL ,< e e n ~ ( l - ~ )  (1 - P + P e e ) n ,  (9.20) 

for any 8 > 0. By direct differentiation we find that the optimal 8’ (giving the smallest 
upper bound) is 

It is not difficult to verify (see Problem 9.1) that by substituting 6’ = 8’ in the right-hand 
side of (9.20) and taking the logarithms on both sides, In(!,) can be upper-bounded by 
n p  h(p, E ) .  where h(p,  E )  is given by 

h ( ~ , p )  = -- In ( 1 + - l:p) + (1 - E ) B *  . 
P 

(9.21) 

For fixed 0 < E < 1, the function h(p,  E )  is monotonically decreasing in p ,  0 < p < 1. 
Namely, 

since -y + In(1 + y) < 0 for any y > 0. It follows that 

And therefore, 

e ,  < exp (-$) 
Similarly, Chernoff’s bound provides the following upper bound for Cu = P(Y 2 (1  + 
E ) n p )  = P(-Y < -(1 + E)np): 

(9.22) 

for all 0 < E < 1; see Problem 9.2. In particular, l?, + Cu < 2 e x p ( - n p ~ ~ / 3 ) .  Combining 
these results gives 

--np ~ ~ 1 3  P ( I Y  - npl < n p ~ )  = 1 - e ,  - e ,  2 1 - 2e , 

so that by choosing n 2 3 ln(2/6)/(p&’), the above probability is guaranteed to be greater 
than or equal to 1 - 6. 0 
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Definition 9.4.1 (FPRAS) A randomized algorithm is said to provide a fullypolynomial 
randomized approximation scheme (FPRAS) if, for any input vector x and any parameters 
E > 0 and 0 < 6 < 1, the algorithm outputs an ( E ,  6)-approximation to the desired quantity 
Z(X) in time that is polynomial in E - ~ ,  In 6-' and the size n of the input vector x. 

Thus, the sample mean in Theorem 9.4.1 provides an FPRAS for estimating p .  Note that 
the input vector x consists of the Bernoulli variables X I ,  . . . , X,. 

Below we present a theorem [22] stating that Algorithm 9.4.1 provides an FPRAS for 
counting the number of satisfying assignments in a DNF formula. Its proof is based on the 
fact that d* is relatively dense in d. Specifically, it uses the fact that for the union of 
sets I = ld*l/ldl 2 l /m, which follows directly from the fact that each assignment can 
satisfy at most m clauses. 

Theorem 9.4.2 (DNF Counting Theorem) The DNF counting Algorithm 9.4.1 is an 
FPRAS, provided that N 2 3m l n ( 2 / 6 ) / ~ ~ .  

Proof Step 2 of Algorithm 9.4.1 chooses an element uniformly from d. The probability 
that this element belongs to d* is at least l /m. Choose 

3m 2 N = - l n -  
€2 6 ' 

(9.23) 

where E > 0 and 6 > 0. Then N is polynomial in m, and In i ,  and the processing 
time of each sample is polynomial in m. By Theorem 9.4.1 we find that with the number 
of samples N as in (9.23), the quantity Z/N (see Algorithm 9.4.1) provides an ( E ,  6)-  
approximation to e and thus IX.1 provides an ( E ,  6)-approximation to I % - *  I .  

0 

----.- 

As observed at the beginning of this section, there exists a fundamental connection 
between uniform sampling from some set X (such as the set d for the DNF counting 
problem) and counting the number of elements of interest in this set [ 1, 221. Since, as we 
mentioned, exact uniform sampling is not always feasible, MCMC techniques are often 
used to sample approximafely from a uniform distribution. 

Let Z be the random output of a sampling algorithm on a finite sample space X. We say 
that the sampling algorithm generates an E-uniform sample from 2- if, for any c X, 

llF(Z E 9) - < E 1x1 (9.24) 

Definition 9.4.2 (FPAUS) A sampling algorithm is called a fullypolynomial almost uni- 
form sampler (FPAUS) if, given an input vector x and a parameter E > 0, the algorithm 
generates an &-uniform sample from X ( x )  and runs in time that is polynomial in In€-I 
and the size of the input vector x. 

EXAMPLE 9.7 FPAUS for Independent Sets: Example 9.4 Continued 

An FPAUS for independent sets takes as input a graph G = (V, E )  and a parameter 
E > 0. The sample space X consists of all independent sets in G, with the output 
being an E-uniform sample from %. The time required to produce such an E-uniform 
sample should be polynomial in the size of the graph and In E - ~ .  The final goal is to 
prove that given an FPAUS, one can construct a corresponding FPRAS. Such a proof 
is based on the product formula (9.9) and is given in Theorem 10.5 of [22]. 
For the knapsack problem, it can be shown that there is an FPRAS provided that there 

exists an FPAUS; see also Exercise 10.6 of [22]. However, the existence of such a method 
is still an open problem [ 151. 
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9.4.3 FPRAS for SATs in CNF 

Next, we shall show that all the above results obtained so far for SATs in the DNF also apply 
to SATs in the CNF. In particular, the proof of FPRAS and FPAUS is simple and therefore 
quite surprising. It is based on De Morgan’s law, 

(n.;>’ = u .x,c and (u.;)‘ = n .x,c. 

Thus, if the { Zi) are subsets of some set Z, then 

Iu 4‘1 

(9.25) 

(9.26) 

In particular, consider a CNF SAT counting problem and let Xi be the set of all assignments 
that satisfy the i-th clause, Ci, i = 1, . . . , m. Recall that Ci is of the form zil Vzi2 V. . ’Vzik. 
The set of assignments satisfying all clauses is X* = nZ,. In view of (9.26), to count 
Z* one could instead count the number of elements in LIZi‘. Now ZiC is the set of all 
assignments that satisfy the clause Zil A Ziz A . . A F,k. Thus, the problem is translated 
into a DNF SAT counting problem. 

As an example, consider the CNF SAT counting problem with clause matrix 

A =  (-: -; :) . 
In this case Z* comprises three assignments, namely, ( l , O , O ) ,  (1,1,0), and 
( I I  1 , l ) .  Consider next the DNF SAT counting problem with clause matrix - A .  
Then the set of assignments that satisfy at least one clause for this problem is 
{ (O,O,  0), (O,O,  l) ,  (0,1,0), (0,1, l),  ( l , O ,  l)}, which is exactly the complement of Z*. 

Since the DNF SAT counting problem can be solved via an FPRAS, and any CNF SAT 
counting problem can be straightforwardly translated into the former problem, an FPRAS 
can be derived for the CNF SAT counting problem. 

-1 0 -1 

9.5 MINXENT AND PARAMETRIC MINXENT 

This section deals with the parametric MinxEnt (PME) method for estimating rare-event 
probabilities and counting, which is based on the MinxEnt method. Below we present some 
background on the MinxEnt method. 

9.5.1 The MinxEnt Method 

In the standard CE method for rare-event simulation, the importance sampling density for es- 
timating[ = Pf(S(X) 2 y) is restricted tosomeparametricfamily, say {f(.; v), v E Y ) ,  
and the optimal density f ( . ;  v’) is found as the solution to theparametric CE minimization 
program (8.3). In contrast to CE, we present below a nonparametric method called the 
MinxEnt method. The idea is to minimize the CE distance to g* over all pdfs rather than 
over {f( . ;v),  v E Y ) .  However, the program min, D(glg*) is void of meaning, since 
the minimum (zero) is attained at the unknown g = 9”. A more useful approach is to first 
specify a prior density h, which conveys the available information on the “target” g * ,  and 
then choose the “instrumental” pdf g as close as possible to h, subject to certain constraints 
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on g. If no prior information on the target g* is known, the prior h is simply taken to be a 
constant, corresponding to the uniform distribution (continuous or discrete). This leads to 
the following minimization framework [2], [3], and [ 171: 

ming D(g, h) = min, s In g(x) dx = min 

s.t. J S,(X) g(x) dx = E,[S,(X)] = yz, i = 1, .  . . , rn , I (9.27) 

J g ( x ) d x =  1 .  

Here g and h are n-dimensional pdfs, Si (x), i = 1, . . . , m, are given functions, and x is an 
n-dimensional vector. The program (PO) is Kullback’s minimum cross-entropy (MinxEnt) 
program. Note that this is a conva functional optimization problem, because the objective 
function is a convex function of g, and the constraints are affine in g. 

g(x) Ing(x) dx + constant, so that the 
minimization of D(g, h) in (PO) can be replaced with the maximization of 

If the prior h is constant, then D(g, h)  = 

W g )  = - g(x) Ing(x) dx = -E ,bg(X) l  I (9.28) 

where X(g) is the Shannon entropy; see (1.52). (Here we use a different notation to 
emphasize the dependence on 9.) The corresponding program is Jaynes’ MuxEnt program 
[ 131. Note that the former minimizes the Kullback-Leibler cross-entropy, while the latter 
maximizes the Shannon entropy [17]. 

In typical counting and combinatorial optimization problems IL is chosen as an n -  
dimensional pdf with uniformly distributed marginals. For example, in the SAT count- 
ing problem, we assume that each component of the n-dimensional random vector X is 
Ber( 1/2) distributed. While estimating rare events in stochastic models, like queueing 
models, h is the fixed underlying pdf. For example, in the M / M / 1  queue h would be a 
two-dimensional pdf with independent marginals, where the first marginal is the interarrival 
Exp(X) pdf and the second is the service Exp(p) pdf. 

The MinxEnt program, which presents a constrained functional optimization problem, 
can be solved via Lagrange multipliers. The solution for the discrete case is derived in 
Example 1.20 on page 39. A similar solution can be derived, for example, via calculus of 
variations [2], for the general case. In particular, the solution of the MinxEnt problem is 

s 

(9.29) 

where Xi, i = 1, . . . , 7n are obtained from the solution of the following system of equations: 

where X - h(x). 
Note that g(x) can be written as 

(9.31) 
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where 

(9.32) 

is the normalization constant. Note also that g(x) is a density function; in particular, 
g(x) 2 0. 

Consider the MinxEnt program (PO) with a single constraint, that is, 

min, D(g, h)  = min, IE, [In H] 
J g(s) dx = 1 

s.t. E,(S(X)] = y , 

In this case (9.29) and (9.30) reduce to 

and 

(9.33) 

(9.34) 

(9.35) 

respectively. 

function, that is, 
In the particular case where S(x), x = (xl, . . . , 5,) is a coordinatewise separable 

S(X) = c Sib,) (9.36) 

and the components X , ,  i = 1, . . . , n of the random vector X are independent under 
h(x) = h(x1) . . . h(xTL), the joint pdf g(x) in (9.34) reduces to the product ofmarginal 
pdfs.  In particular, the i-th component of g(x) can be written as 

n 

2=1 

(9.37) 

Remark 9.5.1 (The MinxEnt Program with Inequality Constraints) It is not difficult 
to extend the MinxEnt program to contain inequality constraints. Suppose that the fol- 
lowing M inequality constraints are added to the MinxEnt program (9.27): 

E,[S,(X)] b y , ,  i = m + l ,  . . . ,  m + M .  

The solution of this MinxEnt program is given by 

h(x) exp { CE:~ s,(x)} 
g(x) = (9.38) 

IEh [exp { c::” Sz(X)}] ’ 

where the Lagrange multipliers X1, . . . , X m + ~  are the solutions to the dual convex opti- 
mization problem 

subject to: X i  2 0,  i = m + 1,. . . , m + M .  
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Thus, only the Lagrange multipliers corresponding to an inequality must be constrained 
from below by zero. Similar to (1.87), this can be solved in two steps, where p can 
be determined explicitly as a normalization constant but the { X i }  have to be determined 
numerically. 

In the special case of a single inequality constraint (that is, m = 0 and M = l), the dual 
program can be solved directly (see also Problem 9.9), yielding the following solution: 

0 i fEh[S(X)]  b y 
A = {  

A *  i fEh[S(X)]  < y , 

where A' is obtained from (9.35). That is, if Eh[S(X)]  < 7, then the inequality MinxEnt 
solution agrees with the equality MinxEnt solution; otherwise, the optimal sampling pdf 
remains the prior h. 

Remark 9.5.2 It is well known [9] that the optimal solution of the single-dimensional 
single-constrained MinxEnt program (9.33) coincides with the celebrated optimal expo- 
nential change of measure (ECM). Note that normally in a multidimensional ECM one 
twists each component separately, using possibly different twisting parameters. In contrast, 
the optimal solution to the MinxEnt program (see (9.37)) is parameterized by a single- 
dimensional parameter A. 

If not otherwise stated, we consider below only the single-constrained case (9.33). Like 
in the standard CE method one can also use a multilevel approach, where a sequence of 
instrumentals { g t }  and levels {yt} is used. Starting with go = f and always taking prior 
h = j ' ,  we determine y t  and gt as follows: 

1. Update Yt as 
Yt = Eg,[S(X) I S ( X )  b stl > 

where qt is the (1 - e)-quantile of S ( X )  under gt- 1. 

2 .  Update gt as the solution to the above MinxEnt program for level y t  rather than y. 

The updating formula for yt  is based on the constraint Eg[S(X)]  = y in the MinxEnt pro- 
gram. However, instead of simply updating as y t  = lEgt_l [S(X)], we take the expectation 
of S ( X )  with respect to gt-1 conditionalupon S ( X )  being greater than its (1 - Q) quantile, 
here denoted as qt.  In contrast, in the standard CE method the level yt is simply updated as 
st. 

Note that each gt is completely determined by its Lagrange multiplier, say A t ,  which is 
the solution to (9.35) with yt instead of y. In practice, both yt and A t  have to be replaced 
by their stochastic counterparts Tt and At, respectively. Specifically, yt  can be estimated 
from a random sample X I , .  . . , XN of yt-1 as the average of the N e  = [(l - Q ) N ~  elite 
sample performances: 

A 

(9.39) 

where S(i)  denotes the i-th order-statistics of the sequence S ( X l ) ,  . . . , ~ ( X N ) .  And A t  
can be estimated by solving, with respect to A, the stochastic counterpart of (9 .33 ,  which 
is 

(9.40) 
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9.5.2 Rare-Event Probability Estimation Using PME 

The above MinxEnt approach has limited applications [25], since it requires sampling from 
the complex multidimensional pdf g(x) of X. For this reason we shall consider in this 
section a modified version of MinxEnt, which is based on the marginal distributions of 
g(x). The modified version is called theparametric MinxEnt (PME) method. We focus on 
the estimation of the rare-event probability 

where we assume for simplicity that X = ( X I , .  . . X , )  is a binary random vector with 
independent components with probabilities u = (211,. . . u,), that is, X N Ber(u). Let 
f(x; u) denote the corresponding discrete pdf. We can estimate d via the likelihood ratio 
estimator as 

(9.41) 

where X I ,  , . . , XN is a random sample from Ber(p), for some probability vector p. typi- 
cally different from u. The question is how to obtain a p that gives a low variance for the 
estimator e^. If e is related to a counting problem, as in (9.Q the same p can be used in 
(9.5) to estimate I%*J.  

Let g(x) in (9.34) be the optimal MinxEnt solution for this estimation problem. By 
summing g(x) over all x i 7  i # j ,  we obtain the marginal pdf for the j-th component. In 
particular, let g(x) be the MinxEnt pdf, as in (9.34), and h(x) = f (x; u), the prior pdf; 
then under g we have X ,  N Ber(p,), with 

so that 
E, [x, , 

p j  = , J = 1, . . . ,  n ,  
E, [eA S(X)] 

(9.42) 

with X satisfying (9.35). Note that these {pj} will form our importance sampling parameter 
vector p. Observe also that (9.42) was extensively used in [25] for updating the parameter 
vector p in rare-event estimation and for combinatorial optimization problems. Finally, it is 
crucial to recognize that (9.42) is similar to the corresponding CE formula (see also (5.67)) 

(9.43) 

with one main difference: the indicator function I{s(x)b7}  in the CE formula is replaced 
by exp { X S(X)}. We shall call pj in (9.42) the optimal PMEparameter and consider it as 
an alternative to (9.43). 

Remark 9.5.3 (PME for Exponential Families) The PME updating formula (9.42) can 
be generalized to hold for any exponential family parameterized by the mean in the same 
way that the CE updating formula (9.43) holds for such families. More specifically, suppose 
that under prior h(x) = f (x; u) the random vector X = ( X I , .  . . , X , )  has independent 
components, and that each X ,  is distributed according to some one-parameter exponential 
family fl(zE; u l )  that is parameterized by its mean - thus, lEh[X,] = Eu[X,] = u,, with 
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u = (u l ,  . . . , un). The expectation of X, under the MinxEnt solution is (in the continuous 
case) 

Let v = (711,. . . , 7 J n )  be another parameter vector for the exponential family. Then the 
above analysis suggests carrying out importance sampling using vj equal to Eg[Xj] given 
in (9.44). 

Another way of looking at this is that v is chosen such that the Kullback-Leibler dis- 
tance from the Boltzmann-like distribution b(x) 0: f(x; u) eXS(X) to f(x; v) is minimized. 
Namely, minimizing D(b, f(.; v)) with respect to v is equivalent to maximizing 

1 h(x) ex In f(x; v) dx = E,[eX In f(X; v)] , 

which (see (A.15) in Section A.3 of the Appendix) leads directly to the updating formula 
(9.44). Compare this with the standard CE method, where the Kullback-Leibler distance 
from g* (x) 0: f(x; U ) I ~ S ( ~ ) ~ ~ ~  to f(x; v) is minimized instead. 

Note that 

1. For a separable function S(x) MinxEnt reduces to PME. Recall that in this case the 
optimal joint pdf presents a product of marginal pdfs. Thus, PME is well suited for 
separable functions, such as those occumng in SATs (see (9.7)). However, it follows 
from Remark 9.5.2 that, even for separable functions, PME is essentially different 
from ECM. 

2. Similar to CE, the optimal PME updating p t  and its estimators can be obtained 
analytically and on-line. 

3. One does not need to resort to the MinxEnt program and to its joint pdf in order to 
derive the optimal parameters p:. 

4. The optimal A* is the same in both MinxEnt and PME. 

5. Sampling from the marginal discrete pdf with the optimal parameters {pf} is easy 
and is similar to CE. 

PME is well suited for separable functions (see item 1 above) and, it will turn out, also 
for block-separable functions, such as those that occur in the SAT problem (see (9.7)). Here 
block-separable means a function of the form 

S(X) = Sl(Y1) + ” ‘  + Sm(Yrn) , 
where each vector yi depends on at most T < n variables in (21,. . . , zn}. 

One might wonder why the PME parameter in (9.42) would be preferable to the standard 
CE one in (9.43). The answer lies in the fact that in complex simulation-based models 
the PME optimal parameters p and X are typically not available analytically and need to 
be estimated via Monte Carlo simulation. It turns out - this is discussed below - that 
for separable and block-separable function the corresponding estimator of (9.42) can have 
a significantly lower variance than the estimator of (9.43). This, in turn, means that the 
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- 
variance of the estimator e? and for a counting problem the variance of estimator lX*l, will 
be significantly reduced. 

For the estimation of the PME optimal parameters p and X one can use, as in the CE and 
MinxEnt methods, a dynamic (multilevel) approach in which the estimates are determined 
iteratively. This leads to the following updating formula for p j  at the t-th iteration: 

k = l  

where it  is obtained from the solution of (9.40) and W denotes, as usual, the likelihood 
ratio. 

Note that - l / X t  can be viewed as a temperature parameter. In contrast to simulated 
annealing, the temperature is chosen here optimally in the CE sense rather than heuristically. 
Also, in contrast to CE, where only the elite sample is used while updating p, in PME (see 
(9.45)) the entire sample is used. 

We explain via a number of examples why the PME updating formula (9.45) can be 
much more stable than its CE counterpart, 

N 

k = l  
F t , j  = 

C '{s(xk)>Ft) w ( x k ;  u, 6t-l) 
k = l  

The key difference is that the number of product terms in W for CE is always n (the size 
of the problem): 

irrespective of the form of S(x), whereas the PME estimator (9.45) for separable or block- 
separable functions can be readily modified such that the number of product terms of the 
likelihood ratio is much smaller than n. 

EXAMPLE93 

Consider a separable sample function, that is: 

n 

S(X) = C S j ( Z j )  . 
j = 1  

Then (9.42) reduces to 
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which can be estimated via importance sampling as 

N 

(9.46) - k=l 
p t ,J  = N 

A 

exp{% sj ( X k j  ) } wj (Xkj ; 21.1 P l -  1 , ~ )  
k=l 

While both (9.45) and (9.46) represent unbiased estimators of p,, the former involves 
the highly unstable likelihood ratio W ( X )  = n,"=, W,(X , )  with respect to the 
n-dimensional vector X ,  whereas the latter involves only the likelihood ratio with 
respect to the one-dimensional variable X , .  As a consequence, the estimator in (9.46) 
generally will have a much smaller variance than the one in (9.45). 

EXAMPLE9.9 

Consider next a block-separable function S(x) of the form 

n- 1 

~ ( x )  = Csj(sj,zj+l) . 
J = 1  

Suppose we want to estimate p 2 .  Consider first the case where S3 = 0. Define 
J = { 1 , 2 , 3 }  and = (4, . . . , T I } .  Let us denote by x J the vector with components 
{ s3, j E J }  and similar for XJ. We can now write S(x) as 

s(x) = sJ(xJ) f sJ(xJ) , (9.47) 

with S J ( X J )  = & ( X l , X z )  + s2(x2,x3) and S j ( X , - )  = CyL: S 3 ( X 3 , X 3 + 1 )  
being independent. In this case, according to (9.42), the component p,, j = 2 of p 
can be updated according to 

(9.48) 
- - [xJ e x P { A S J ( X J ) } ]  

'UJ [exp s J ( x J ) } ]  ' 

which can be estimated via importance sampling as 

N 

c x k j  exP{% s J ( x k J ) }  W J ( X k J ;  U 1 6 t - 1 )  

, (9.49) 
- k=l 
pt>, = N 

x e x P { %  s ( x k J ) }  W J ( X k J ;  U , 6 t - 1 )  
k= 1 

with WJ the corresponding likelihood ratio, which now only has two product terms. 
Thus, for large TI,  the estimator in (9.49) typically has a much smaller variance than 
the one in (9.45) 

Suppose next that S3 does not vanish, so that S J ( X J )  and S J ( X J )  are depen- 
dent. Then, obviously, (9.45) is no longer valid. Nevertheless, for block-separable 
functions, this formula can still be used as an approximation to the true updating 
formula (9.42). In this case the estimator based on (9.45) may contain some bias, but 
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the advantage of estimating p j  with a greatly reduced variance could outweigh the 
disadvantage of having a slightly biased estimator. 

We call (9.49) the PME estimator. Our main application of block-separable functions is 
the SAT counting problem, as explained in the next example. 

EXAMPLE 9.10 

Consider a 3-SAT problem defined by the following 8 x 6 clause matrix A = (aij): 

A =  

‘ 0  1 0 - 1  0 1 0 0  
- 1 0 0 0 1 0 0 1  

1 0 0 1 0 0 - 1 0  
0 1 0 1 0 0 0 1  
0 - 1 0 1 0 1 0 0  

, 1  0 - 1  0 - 1  0 0 0 

Let S(x) = Czl G,(x) denote the number of valid clauses for truth assignment 
x; see (9.7). Recall that Ct(x) is the truth value (0 or 1) corresponding to the i-th 
clause and is given by (9.1). The block-separable structure of S(x) is evident. Hence, 
we could use the PME estimator (9.49) to update p ,  for each j = 1, . . . , n. To indicate 
that the corresponding index set J depends on j ,  we denote it by 5,. The set J3 is 
constructed as follows. First, let K3 be the set of indices k for which ak3 is nonzero. 
For example, K2 = { 1,4,5}. Now define J3 as the set { T  : # 0 for some k E 
K 3 } .  For example, J2 = { 2,4,6,8}, which corresponds to SJ ,  (X2, X4,  X 6 ,  X g )  = 
C l ( X 2 ,  X 4 ,  X 6 )  + c 4 ( X 2 ,  X4, X,) + C5(X2, X4, X 6 ) ,  where we have used a slight 
abuse of notation (note that C,(x) is formally a function of the eight-dimensional 
vector x). The sets J , ,  j = 1 , .  . . , 8 are summarized in Table 9.4. 

Table 9.4 The index sets 53, j = 1, . . . , 8  corresponding to clause matrix A. 

J’ Jj j J j  

1 1,2,3,5,7,8 5 1,3,5,8 
2 2,4,6,8 6 2,4,6 
3 1,3,5 7 1,4,7 
4 1,2,4,6,7,8 8 1,2,4,5,8 

Remark 9.5.4 (Depth-k Updating) Consider again the block-separable function S(x) = 
S1(z1 ,22)+S2(52 ,  z 3 )  +. . .+Sn-l(z,-l , 5,) inExample9.9. To updatepj via thePME 
estimator (9.49), we need to identify the index set J j  = { k : x k  is in the same block as xj}. 
For example, J2 = { 1,2,3} and 5 3  = {2,3,4}. Let 5;’) = U k E J z 5 k  be the set of indices 
that are in the same block as at least one of the elements in J2. Thus, in this example .I;’) 
= { 1,2,3,4}. Instead of updatingp2 via J = 5 2  in (9.49), one could take J = 5;’) instead. 
We call this depth-2 updating. By similar reasoning, one can define depth-3, depth-4, and 
so on, updating. For example, the depth-4 index set for p2 is Ji4) = { 1,2,3,4,5,6}.  As a 
final example, the depth-2 index set for p 3  in the 3-SAT problem of Example 9.10 is J;’) 

Our extensive numerical results indicate that although the depth- 1 solution typically 
provides satisfactory results, depth-2 performs best in terms of small bias and high accuracy. 
It is interesting to note that in contrast to CE, while using the naive PME updating for p 
(with the size of W equal to the size n of the problem), we still obtain reasonably good 
results. This is quite a surprising result, which needs further investigations. 

= J 1  U 5 3  U J5 = { 1,2,3,5,7,8} 
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We saw that the PME estimator (9.49) is ideally suited for componentwise separable 
functions. Let us examine its efficiency (in terms of the size of the index set J )  for the K -  
RSAT problem, having in mind that m = P'n, where P' is the threshold value. Consider 
first the 2-RSAT problem, where p* = 1. Each variable x, or its negation 5, occurs on 
average in two different clauses. Since each of these classes has a 1 or - 1 in column j and 
also in another column (possibly the same), this implies that the average size of the index 
set J is less than 3 - close to 3 for large n. A similar analysis shows that for a K-RSAT 
problem the average size of J each is less than PK(K - 1) + 1, provided that this is less 
than n. For 3-SAT, for example, with the threshold ,B = 4.26, we have 4.26 x 6 + 1 N 26, 
provided that n > 26. Note that for large K ,  the PME estimator could still be quite noisy 
due to the size of each W term. 

As mentioned, the PME method for rare events and counting is similar to CE in the sense 
that the updating rule in (9.49) is parametric. The main difference is that the updating rule 
in CE involves a likelihood ratio W that is of size n, while the updating rule for PME is 
based on block-separable functions of type (9.49) with the size of W much smaller than n. 

Below we present the PME algorithm for counting SAT assignments based on the up- 
dating formula (9.49). 

Algorithm 9.5.1 (PME Algorithm for Counting SAT Assignments) 

I .  DeJine 60 = u. Set t = 1 (iteration = level counter). 

2 .  Generate asample XI,. . . , XN from thedensity f (x; &-I)  andcornputeyt accord- 
ing to (9.39). 

3. Use the same sample XI, . . . , XN and update pt according to (9.49). Denote the 
solution by fit. 

4. Smooth out the vector &, similar to (8.20) 

5.  rfyt  < m, set t = t + 1 and reiterate from Step 2. Otherwise, proceed with Step 6. 

6. Estimate the counting quantity I X* I as 

(9.50) 

where T denotes thejinal number of iterations (= number of levels used). 

9.6 PME FOR COMBINATORIAL OPTIMIZATION PROBLEMS AND 
DECISION MAKING 

It should follow from the above that the PME counting Algorithm 9.5.1 can be readily mod- 
ified to handle difficult decision-making problems (like deciding whether or not there exists 
a valid SAT assignment) and combinatorial optimization problems. In particular, below we 
design a PME algorithm for combinatorial optimization problems, which coincides with its 
counting (rare-event) PME counterpart Algorithm 9.5.1, provided that its likelihood ratios 
are removed. To be more specific, in the combinatorial optimization algorithm we will be 
using Steps 1-4 of Algorithm 9.5.1 with likelihood ratios set automatically to unity. Recall 
that the standard CE algorithm for combinatorial optimization problems coincides with its 
CE counting (rare-events) counterpart by setting all the relevant likelihood ratios to unity 
or simply by removing them. 
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For completeness, we present below the PME algorithm for combinatorial optimization 
problems with Bernoulli updating formulas. Its extension to the case of n-point discrete 
pdf is similar. 

Algorithm 9.6.1 (PME Algorithm for Combinatorial Optimization Problems) 

1. Define 60 = u. Set t = 1 (iteration = level counter). 

2. Generate a sample XI, . . . , XN from the density f (x; eL- 1) and compute ?t accord- 
ing to (9.39). 

3. Use the same sample XI,  . . . , XN and update p t  according to (9.49) by setting all 
likelihoodratios W = 1. Denote the solution by &. 

4. Smooth out the vector GL similar to (8.20). 

5. Ifthe stopping criterion is met, stop; otherwise, set t = t + 1 and return to Step 2. 

Recall from Algorithm 8.3.1 that as a stopping criterion one can use (8.21); that is, if for 
some t 2 d, say d = 5, 

then stop. 
Our extensive numerical studies with Algorithm 9.6.1 (see also [ 2 5 ] )  suggest that it is 

at least as accurate as its CE counterpart, Algorithm 8.3.1. We argue that the main reasons 
are that 

, . A  

Yt  = YL-l  = f . .  = ? t -d  1 

1. The PME Algorithm 9.6.1 uses the entire sample instead of only the elite one. 

2. The temperature parameter - l / X L  is chosen optimally in the MinxEnt sense rather 
than heuristically. 

9.7 NUMERICAL RESULTS 

Here we present comparative simulation studies with the CE and PME algorithms for 
different K-RSAT problems. All of our simulation results correspond to the dificult rare- 
event cases, in the sense that p = m/n is chosen near the critical value p*. For 2-RSAT 
and 3-RSAT, p* = 1 and p* =: 4.2, respectively. 

If not stated otherwise, we set e = 0.001 and a = 0.7, and we use equal sample sizes 
N for each run of PME and CE while estimating both p and IX*l. 

To study the variability in the solutions, we run each problem 10 times and report our 
statistics based on these 10 runs. In the following tables t denotes the iteration number. 
The other quantities are defined as follows (for each iteration t): - 

Mean, m a  and min IZ*( denote the sample mean, maximum, and minimum of the 
10 estimates of I X'I, respectively. 

Mean, max and min Found denote the sample mean, maximum, and minimum of the 
number of different valid assignments found in each of the 10 samples of size N ,  
respectively. Note that the maximum value can be viewed as the lower bound of the 
true unknown quantity IX*(. 

PV denotes the proportion of generated valid assignments averaged over 10 replica- 
tions. 

RE denotes the mean relative error for rX.7 averaged over the 10 runs. 
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We consider the following models. 

1. Random 3-SAT with a relatively small matrix, namely A = (25 x 100). For this 
matrix we found the exact number of true SAT assignments via full enumeration. 
We then compared this exact number with the one generated by the CE and PME 
methods. We found that PME performs very accurately, delivering after 10 iterations 
a relative error of less than 0.5% and outperforming CE. 

2. Random 3-SAT with a relatively large matrix A = (75 x 375), which is taken from 
the SATLIB website WW . s a t l i b .  org. We found again that PME performs quite 
accurately, while CE fails. 

We first consider the random 3-SAT problem for n = 25 with B* = 4.2, that is, near 
the critical value. For this case, six true assignments were found via full enumeration. 
Tables 9.5 and 9.6 present the performance of the PME and CE algorithms, respectively, 
for the random 3-SAT with matrix A = (25 x 100) and sample size N = 50,000. It took 
about 5 seconds to compute each table. 

Table 9.5 
A = (25 x loo), six valid assignments, and N = 50,000. 

Performance of the PME algorithm for the random 3-SAT with the clause matrix 

t 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

- 
la 

Mean Max Min 
6.1001 35.4294 0.0000 
5.4844 1 1.9808 0.0000 
5.1513 8.5898 3.2131 
5.6476 6.938 1 3.568 1 
5.9956 6.1841 5.7894 
6.0130 6.0792 5.9370 
6.0077 6.0589 5.9203 
5.9975 6.051 1 5.9655 
6.0057 6.0398 5.9637 
6.0075 6.0446 5.9445 

Found 
Mean Max 
0.2000 1 
2.0000 5 
4.9000 6 
5.7000 6 
6.0000 6 
6.0000 6 
6.0000 6 
6.0000 6 
6.0000 6 
6.0000 6 

Min 
0 
0 
3 
5 
6 
6 
6 
6 
6 
6 

- PV 
0.0000 
0.0001 
0.0009 
0.0429 
0.1863 
0.3362 
0.4082 
0.4325 
0.44 18 
0.4439 

RE 
2.0324 
0.6773 
0.3003 
0.1477 
0.0166 
0.0072 
0.0068 
0.0046 
0.0039 
0.0046 

Table 9.6 
A = (25 x loo), six valid assignments, and N = 50.000. 

Performance of the CE algorithm for the random 3-SAT with the clause matrix 

10.4858 
5.6237 
5.5700 
5.5330 
5.2768 
5.2990 

le 
Max Min 

49.5243 0.0000 
27.3171 0.0000 
10.8166 0.0000 
31.4573 0.0000 
8.3948 2.3175 
7.9109 1.0197 
10.6799 1.6970 
9.3622 1.7971 
7.0927 2.8527 
6.2015 2.3662 

Found 
Mean Max 
0.2000 1 
0.9000 3 
3.7000 6 
1.1000 3 
2.9000 6 
4.0000 6 
4.2000 6 
4.4000 6 
4.7000 6 
5.0000 6 

Min 
0 
0 
0 
0 
2 
2 
2 
3 
3 
3 

- 

Figure 9.9 presents a typical dynamics of the PME algorithm for the random 3-SAT 
problem with the clause matrix A = (25 x 100). 
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Figure 9.9 
A = (25 x loo), six valid assignments, and N = 50,000. 

Typical dynamics of the PME algorithm for the random 3-SAT with the clause matrix 

Y 0:;i 

-* o.:;i 
5 10 15 20 25 

0 

25 
0 

5 10 15 20 

2 o.:;j 
0 

5 10 15 20 25 

Y 

5 10 15 20 25 

" 
5 10 15 20 25 

" 
5 10 15 20 25 

5 10 15 20 25 

5 10 15 20 25 

5 10 15 20 25 

It readily follows from these data that after several iterations both methods are capable 
of finding all six true assignments, while the PME method is more accurate (compare, for 
example, RE = 0.044 for PME with RE = 0.4185 for CE at iteration t = 18). One can also 
see that most of the parameters p , ,  i = 1, . . . , 2 5  converge to the degenerate case, that is, 
they are equal to either 1 or to 0. This is due to the fact that the number of true assignments 
is small (equal to 6). It should be clear that if the number of true assignments equals 1, then 
all parameters pi, i = 1, . . . , n would converge to the degenerate case. 

We next present, in Table 9.5 and Figure 9.10, the performance of the PME algorithm 
for the random 3-SAT with the matrix A = (75 x 325), taken from the SATLIB website 
www . sat l i b .  org. We found again that in this case CE fails, in the sense that its relative 
error is about 0.6, while for PME the relative error is approximately 0.02. We also found 
that for n > 50 CE fails, while PME still performs nicely up to n = 500. 

Note that block separability does not automatically guarantee that the size of the like- 
lihood ratio term W in PME will always be small for all randomly generated matrices A.  
Note, however, that by limiting the number of literals in the matrix A = (n  x Dn) colum- 
nwise, as in the Lovasz local lemma [22], we can always guarantee the superiority of PME 
compared to CE, at least for moderate values of K, say K 5 5, in the random K-SAT 
models. 
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Table 9.7 
A = (75 x 325) and N = 100,000. 

Performance of the PME algorithm for the random 3-SAT with the clause matrix 

t 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

- Min Mean Max 
0.00 0.00 0.00 

382.08 1818.15 0.00 
1349.59 3152.26 0.00 
1397.32 2767.18 525.40 
1375.68 1828.1 1 878.00 
434.95 1776.47 1341.54 
374.64 1423.99 1340.12 
392.17 1441.19 1356.97 
397.13 1466.46 1358.02 
384.37 1419.97 1354.32 
377.75 1424.07 1320.23 

IF1 Found 
Mean Max Min 
0.00 0 0 
4.70 35 0 

110.30 373 0 
467.70 1089 42 
859.50 1237 231 
153.70 1268 910 
244.90 1284 1180 
273.10 1290 1248 
277.30 1291 1260 
277.10 1296 1258 
271.90 1284 1251 

PV 
0.0000 
0.0000 
0.001 8 
0.0369 
0.1 143 
0.2020 
0.2529 
0.2770 
0.28 16 
0.2832 
0.2870 

RE 
NaN 

1.7765 
0.8089 
0.4356 
0.1755 
0.0880 
0.0195 
0.0207 
0.0250 
0.0 166 
0.0258 

Figure 9.10 
matrix A = (75 x 325) and N = 100,000. 

v p i c a l  dynamics of the PME algorithm for the random 3-SAT problem with the clause 
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PROBLEMS 

9.1 Prove the upper bound (9.21). 

9.2 Prove the upper bound (9.22). 

9.3 Consider Problem 8.9. Implement and run a PME algorithm on this synthetic max- 
cut problem for a network with n = 400 nodes, with m = 200. Compare with the CE 
algorithm. 

9.4 Let { A , }  be an arbitrary collection of subsets of some finite set X. Show that 

This is the useful inclusion-exclusion principle. 

9.5 A famous problem in combinatorics is the distinct representatives problem, which 
is formulated as follows. Given a set d and subsets dl, . . . , dn of d, is there a vector 
x = (z1, . . . , 2,) such that z, E d, for each i = 1, . . . , n a n d  the { x i }  are all distinct (that 
is, z, # z3 if i # j)? 

a) Suppose, for example, that d = { 1,2 ,3 ,4 ,5} ,  d1 = { 1; 2,5}, d2 = { 1,4},  
~ $ 3  = {3,5}, d d  = {3 ,4} ,  and ds = { 1) .  Count the total number of distinct 
representatives. 

b) Argue why the total number of distinct representatives in the above problem is 
equal to the permanent of the following matrix A. 

9.6 Let X I ,  . . . , X, be independent random variables,each with marginal pdf f. Suppose 
we wish to estimate ! = Pj (XI + . . . + X, 2 y) using MinxEnt. For the prior pdf, one 
could choose h(x) = f(zl)f(zz). . . f(z,), that is, the joint pdf. We consider only a 
single constraint in the MinxEnt program, namely, S(x) = x1 + . . . + 2,. As in (9.34), 
the solution to this program is given by 

where c = l / lE~[eXS(X)]  = ( l E ~ [ e ' ~ ] ) - "  is a normalization constant and X satisfies (9.35). 
Show that the new marginal pdfs are obtained from the old ones by an exponential twist, 
with twisting parameter -X; see also (A.13). 

9.7 Problem 9.6 can be generalized to the case where S(x) is a coordinatewise separa- 
ble function, as in (9.36), and the components {Xi} are independent under the prior pdf 
h(x). Show that also in this case the components under the optimal MinxEnt pdf g(x) are 
independent and determine the marginal pdfs. 
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9.8 Let X be the set of permutations x = ("1, . . . , z,) of the numbers 1,. . . , n, and let 
n 

S(x) = c j " j  (9.5 1) 
3=1  

Let X* = {x : S(x) 2 y}, where y is chosen such that IX'I is very small relative to 

Implement a randomized algorithm to estimate I X * I based on (9.9), using Xj = { x : 
S(x) 2 yj}, for some sequence of {y j }  with 0 = yo < y1 < . . . < yT = y. Estimate each 
quantity Pu(X E X k  I X E Xk-1). using the Metropolis-Hastings algorithm for drawing 
from the uniform distribution on Xk-1. Define two permutations x and y as neighbors if 
one can be obtained from the other by swapping two indices, for example ( 1 , 2 , 3 , 4 , 5 )  and 

9.9 Write the Lagrangian dual problem for the MinxEnt problem with constraints in 
Remark 9.5.1. 

1x1 = n!. 

( 2 , L  3 ,4 ,5 ) .  

Further Reading 

For good references on #P-complete problems with emphasis on SAT problems see [2 1,221. 
The counting class #P was defined by Valiant [29]. The FPRAS for counting SATs in DNF 
is due to Karp and Luby [ 181, who also give the definition of FPRAS. The first FPRAS 
for counting the volume of a convex body was given by Dyer et al. [ 101. See also [8] for 
a general introduction to random and nonrandom algorithms. Randomized algorithms for 
approximating the solutions of some well-known counting #P-complete problems and their 
relation to MCMC are treated in [ I  1, 14, 22, 23, 281. Bayati and Saberi [ I ]  propose an 
efficient importance sampling algorithm for generating graphs uniformly at random. Chen 
et al. [7] discuss the efficient estimation, via sequential importance sampling, of the number 
of 0-1 tables with fixed row and column sums. Blanchet [4] provides the first importance 
sampling estimator with bounded relative error for this problem. Roberts and Kroese [24] 
count the number of paths in arbitrary graphs using importance sampling. 

Since the pioneering work of Shannon [27] and Kullback [19], the relationship between 
statistics and information theory has become a fertile area of research. The work of Kapur 
and Kesavan, such as [16, 171, has provided great impetus to the study of entropic princi- 
ples in statistics. Rubinstein [25] introduced the idea of updating the probability vector for 
combinatorial optimization problems and rare events using the marginals of the MinxEnt 
distribution. The above PME algorithms for counting and combinatorial optimization prob- 
lems present straightforward modifications of the ones given in [26]. For some fundamental 
contributions to MinxEnt see [2, 31. In [5, 61 a powerful generalization and unification of 
the ideas behind the MinxEnt and CE methods is presented under the name generalized 
cross-entropy (GCE). 
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APPENDIX 

A.l  CHOLESKY SQUARE ROOT METHOD 

Let C be a covariance matrix. We wish to find a matrix B such that C = BBT.  The 
Cholesky square root method computes a lower triangular matrix B via a set of recursive 
equations as follows: From (1.23) we have 

Therefore, Var(Z1) = 0 1 1  = b:, and b l l  = .{1/'. Proceeding with the second component 
of (1.23), we obtain 

2 2  = b21 Xi + b22 X 2  + p 2  (A.2) 

('4.3) 

and thus 
0 2 2  = Var(22) = Var(bzlX1 + b22X2)  = bzl + b i 2 .  

Further, from (A.l) and (A.2). 

Hence, from (A.3) and (A.4) and the symmetry of C, 

Simulation and the Monte Carlo Method, Second Edition. By R.Y. Rubinstein and D. P. Kroese 
Copyright @ 2007 John Wiley & Sons, Inc. 

31 5 
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Generally, the bij can be found from the recursive formula 

where, by convention, 
0 

b . b .  tk jk - 0 ,  - l < j < i < n .  
k=l 

A.2 EXACT SAMPLING FROM A CONDITIONAL BERNOULLI 
DISTRIBUTION 

Suppose the vector X = ( X I , .  . . , XT, )  has independent components, with X, - Ber(pi), 
i = 1 , .  . . , n. It is not difficult to see (see Problem A. 1) that the conditional distribution of 
X given xi X ,  = k is given by 

where c is a normalization constant and w, = pl/(l  - p a ) ,  i = 1 , .  . . , n. Generating 
random variables from this distribution can be done via the so-called drafting procedure, 
described, for example, in [ 2 ] .  The Matlab code below provides a procedure for calculating 
the normalization constant c and drawing from the conditional joint pdf above. 

EXAMPLEA.l 

Suppose p = (1 /2 ,1 /3 ,1 /4 ,1 /5)  and k = 2. Then w = ( w I , .  ..,wq) = 
(1 ,1 /2 ,1 /3 ,1 /4) .  The first element of Rgens(k,w), with k = 2 and w = w is 
35/24 N 1.45833. This is the normalization constant c. Thus, for example, 

I $ X i  = 2) = - _ -  N 0.08571 
35/24 35 

XI = 0 , x z  = 1,x3 = o,x4 = 2 1  

To generate random vectors according to this conditional Bernoulli distribution call 
condbern(p, k), where k is the number of unities (here 2) and p is the probability 
vector p. This function returns the positions of the unities, such as (1,2) or (2,4). 

function sample = condbern(k,p) 
% k = no of units in each sample, P = probability vector 
W=zeros (l,length(p) 1 ; 
sample=zeros (1, k) ; 
indl=find(p==l) ; 
sample(l:length(indl))=indl; 
k=k-length (indl) ; 
ind=find(p<l & p>O) ; 
W(ind)=p(ind) ./(l-p(ind)) ; 
for i=l:k 
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Pr=zeros(l ,length(ind)) ; 
Rvals=Rgens (k-i+l , W (ind) ) ; 
for j=1: length(ind1 

end 
Pr=cumsum(Pr) ; 
entry=ind(min(find(Pr>rand))); 
ind=ind(find(ind-=entry)); 
sample(length(indl)+i)=entry; 

Pr (j)=W(ind( j)) *Rvals (j+l)/ ((k-i+l) *Rvals (1) ) ; 

end 
sample=sort(sample); 
return 

function Rvals = Rgens(k,W) 
N=length(W) ; 
T=zeros(k,N+l); 
R=zeros(k+l,N+l); 
for i=l:k 

for j=1: N. T(i , l)=T(i, 1)+W (j) -i ; end 
for j=l:N, T(i,j+l)=T(i,l)-W(j>̂ i; end 

end 
R(1, :)=ones(l,N+l); 
for j=l:k 

for l=l:N+l 
for i=l:j 

end 
R( j+l ,l)=R( j+l ,l)+(-l)- (i+l) *T(i, 1) *R( j-i+l,l) ; 

end 
R(j+l,:)=R(j+l,:)/j; 

end 
Rvals= [R(k+l ,1) , R(k, 2 : N+1) 1 ; 
return 

A.3 EXPONENTIAL FAMILIES 

Exponential families play an important role in statistics; see, for example, [ 11. Let X be 
a random variable or vector (in this section, vectors will always be interpreted as column 
vectors) with pdf f(x; 0) (with respect to some measure), where 8 = ( e l , .  . . , is 
an m-dimensional parameter vector. X is said to belong to an m-parameter exponential 

fumify if there exist real-valued functions t z ( x )  and h(x) > 0 and a (normalizing) function 
c ( 0 )  > 0 such that 

where t(x) = (tl(x), . . . , t , ( ~ ) ) ~  and 8 .  t(x) is the inner product czl e,t,(x). The 
representation of an exponential family is in general not unique. 
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Remark A.3.1 (Natural Exponential Family) The standard definition of an exponential 
family involves a family of densities {g(x; v)} of the form 

g(x; v) = d(v) ee(v).t(x) h ( x ) I  (A.lO) 

whereB(v) = (Ol(v), . . . , Bm(v))T. and the { B i }  arereal-valuedfunctionsoftheparameter 
v. By reparameterization - by using the 0, as parameters - we can represent (A. 10) in 
so-called canonical form (A.9). In effect, 8 is the natural parameter of the exponential 
family. For this reason, a family of the form (A.9) is called a natural exponential family. 

Table A.l displays the functions c ( B ) ,  t k ( ~ ) ,  and h ( ~ )  for several commonly used 
distributions (a dash means that the corresponding value is not used). 

Table A.l The functions c(O), t k ( x )  and h(x) for commonly used distributions. 

1 
( - & ) S Z + l  

- A ,  a -  1 
r(Q2 + 1) 

Garnrna(a, A)  x, Inx 

Weib(a, A) x", I n s  -81 (Qz + 1) -A" ,  a -  1 1 

As an important instance of a natural exponential family, consider the univariate, single- 
parameter (m = 1) case with t ( ~ )  = 2. Thus, we have a family of densities {f(s; @), 19 E 
0 c R} given by 

f ( ~ ;  e) = c(e)  ess h ( ~ )  . (A.11) 

If h(z)  is a pdf, then c-l(B) is the corresponding moment generating function: 

It is sometimes convenient to introduce instead the logarithm of the moment generating 
function: 

( ( e )  = ln / eezh(z) dz , 

which is called the curnulanf function. We can now write (A. 1 1)  in the following convenient 
form: 

j(x; e)  = esZ-((') h(z) . (A. 12) 
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EXAMPLEA.2 

If we take h, as the density ofthe N(0, a2)-distribution, 0 = X / c 2  and ((0) = g2 02/2, 
then the family { , f ( . ;  O ) ,  0 E R} is the family of N(X, 02) densities, where a2 is fixed 
and X E R. 

Similarly, if we take h as the density of the Gamma(a, 1)-distribution, and let 
8 = 1 - X and ((0) = -a In( 1 - 0) = -a In A, we obtain the class of Gamma(a, A) 
distributions, with a, fixed and X > 0. Note that in this case 8 = (-00, 1). 

Starting from any pdf f o .  we can easily generate a natural exponential family of the form 
(A. 12) in the following way: Let 8 be the largest interval for which the cumulant function 
( of fo exists. This includes 0 = 0, since f o  is a pdf. Now define 

(A. 13) 

Then {f(.; 0) ,  0 E 0} is a natural exponential family. We say that the family is obtained 
from fo by an exponential twist or exponential change of measure (ECM) with a twisting 
or tilting parameter 8. 

Remark A.3.2 (Repararneterization) It may be useful to reparameterize a natural expo- 
nential family of the form (A.12) into the form (A.lO). Let X - f(.; 0).  It is not difficult 
to see that 

Eo[X] = ('(0) and Varo(X) = ("(0) . (A.14) 

( ' ( 0 )  is increasing in 8, since its derivative, (" (0 )  = Varo(X), is always greater than 0. 
Thus, we can reparameterize the family using the mean v = E@[X]. In particular, to the 
above natural exponential family there corresponds a family {g(.; v)} such that for each 
pair (0, v) satisfying ('(0) = v we have g(z; v) = f(x; 8 ) .  

EXAMPLEA.3 

Consider the second case in Example A.2. Note that we constructed in fact a 
natural exponential family {f(.; e) ,  0 E ( - m , l ) }  by exponentially twisting the 
Garnma(cr, 1) distribution, with density fo(z) = za- le -z / r (a ) .  We have ('(0) = 
a / (  1 - 0) = 1 1 .  This leads to the reparameterized density 

corresponding to the Gamma(a, QZI-') distribution, v > 0. 

CE Updating Formulas for Exponential Families 

We now obtain an analytic formula fora general one-parameter exponential family. Let X - 
f(z;  u) for somenominal reference parameter u. For simplicity, assume that E, , [H(X)]  > 0 
and that X is nonconstant. Let .f(o;; u) be a member of a one-parameter exponential family 
{ , f ( : r ;  71)). Suppose the parameterization q = $(v) puts the family in canonical form. That 
is, 

j ( z ;  v) = g(z; 7) = eqz-c(a)h(z) . 
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Moreover, let us assume that 71 corresponds to the expectation of X. This can al- 
ways be established by reparameterization; see Remark A.3.2. Note that, in particu- 
lar, v = <’(q). Let 0 = @(u) correspond to the nominal reference parameter. Since 
max,E,[H(X) Inf (X;  w)] = max? Eo[H(X) l n g ( X ;  q)] ,  we may obtain the optimal 
solution 71” to (5.61) by finding, as in (5.62), the solution q* to 

and putting 71* = $-‘(v*), Since ( lng(X;  7))’ = 5 - <’(r / ) ,  and C’(q) = w, we see that 
w* is given by the solution of IE,[H(X) (-u + X ) ]  = 0. Hence w* is given by 

(A.15) 

for any reference parameter w. It is not difficult to check that ?I*  is indeed a unique global 
maximumof D ( v )  = E,[H(X) l n f ( X ;  w)]. ThecorrespondingestimatorSofw* in(A.15) 
is 

(A.16) 

where XI, . . . , XN is a random sample from the density f(.; w). 
A similar explicit formula can be found for the case where X = (XI, . . . , X,) is a vector 

of independent random variables such that each component X, belongs to a one-parameter 
exponential family parameterized by the mean; that is, the density of each Xj is given by 

where u = ( u . ~ ,  . . . ,71,,,) is the nominal reference parameter. It is easy to see that problem 
(5.64) under the independence assumption becomes “separable,” that is, it reduces to n 
subproblems of the form above. Thus, we find that the optimal reference parameter vector 
V* = (v i ,  . . . , w;) is given as 

Moreover, we can estimate the j-th component of v* as 

(A.18) 

where XI,  . . . , XN is a random sample from the density f ( . ;  w )  and X, ,  is the j-th com- 
ponent of X,.  

A.4 SENSITIVITY ANALYSIS 

The crucial issue in choosing a good importance sampling density f(x;v) to estimate 
Vkl(u)  via (7.16) is to ensure that the corresponding estimators have low variance. We 
consider this issue for the cases k = 0 and k = 1. For k = 0 this means minimizing 
the variance of [(u; v) with respect to v, which is equivalent to solving the minimization 
program 
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For the case k = 1, note that Ve^(u; v)  is a vector rather than a scalar. To obtain a good 
reference vector v, we now minimize the trace of the associatedcovariance matrix, which 
is equivalent to minimizing 

minL'(v;u) = minE, [H2(X)W2(X;u,v) t r  ( S ( U ; X ) ~ ( U ; X ) ~ ) ] ,  (A.20) 
V 

where t r  denotes the trace. For exponential families both optimization programs are convex, 
as demonstrated in the next proposition. To conform with our earlier notation for exponential 
families in Section A.3, we use 8 and r ]  instead of u and v, respectively. 

A.4.1 Convexity Results 

Proposition A.4.1 Let X be a random vector from an m-parameter exponential family of 
theform (A.9). Then Lk(r]; 8), k = 0,1, defnedin (A.l9)and(A.20), areconvexfunctions 

of 77. 

Proof Consider first the case k = 0. One has (see (7.23)) 

(A.21) 

where 
c(r])-' = J eq ' t (z)h ( z ) d z .  

Substituting the above into (A.21) yields 

c0(r]; e) = c ( ~ ) ~  J J H2(x)e2e.t(x)+rl.(t(z)-t(X))~(x) h(z)  dxdz . (A.22) 

Now, for any linear function, a(r])  of r ] ,  the function eu(q) is convex. Since H2(x) is 
nonnegative, it follows that for any fixed 8, x, and z, the function under the integral sign in 
(A.22) is convex in r]. This implies the convexity of Lo(q;  8). 

The case k = 1 follows in exactly the same way, noting that the trace 
0 t r  (s(8; x)s(e; x ) ~ )  is a nonnegative function for x for any 8. 

Remark A.4.1 Proposition A.4.1 can be extended to the case where 

[(U) = v(el (u)) .  . 1 ek(u)) 

and 

t i ( . )  = E,[Hi(X)] = E,[Hi(X)W(X; u;v)]  = Ev[HiW], i = 1 , .  . . , k . 

Here the {Hi(X)} are sample functions associated with the same random vector X and 
p(.) is a real-valued differentiable function. We prove its validity for the case k = 2. In 
this case, the estimators of t(u) can be written as 

e^(u;v) = cp(e^l(~;v),e^2(~;v)) 1 
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where gl(u; v) and F ~ ( U ;  v) are the usual importance sampling estimators of tl(u) and 
t,(u), respectively. Byvirtueofthedeltamethod(seeProb1em 7.1 l), N ' / 2 ( T ( ~ ;  v) -t(u)) 
is asymptotically normal, with mean 0 and variance 

a2(v; u) = a2 Var,(H1 W )  + b2 Var,(HzW) + 2 a b Cov, (HI W, H2W) 

= IE, [ ( u H ~  + bH2)' W 2 ]  + R(u) . (A.23) 

Here R(u) consists of the remaining terms that are independent of  v, (I = acp(z1, z2)/dzl 
and b = i3p(zl ,s2) /dz2 at ( 5 1 , ~ )  = (tl(u),l2(u)). For example, for c p ( z 1 , z ~ )  = 
x1/x2. one gets a = l/k'2(u) and b = -P~(u)/~z(u)~. 

The convexity of a2(v; u) in v now follows similarly to the proof of Proposition A.4.1. 

A.4.2 Monotonicity Results 

Consider optimizing the functions Cc"(v; u), k = 0 , l  in (A.19) and (A.20) with respect to 
v. Let v * ( k )  be the optimal solutions for k = 0, 1. The following proposition states that 
the optimal reference parameter always leads to a "fatter" tail for f(x; v') than that of the 
original pdf f(x; u). This important phenomenon is the driving force for all of our beautiful 
results in this book, as well as for preventing the degeneracy of our importance sampling 
estimates. For simplicity, the result is given for the gamma distribution only. Similar results 
can be established with respect to some other parameters of the exponential family and for 
the CE approach. 

Proposition A.4.2 Let X - Gamma(a, u). Suppose that H 2 ( x )  is a monotonically in- 
creasing function on the interval [ O , o o ) .  Then 

v*(k) < u, k = 0 , l  . (A.24) 

The proof will be given for k = 0 only. The proof for k = 1, using the trace 

Since C(v) is convex, it suffices to prove that its derivative with respect to v is positive 

Proof: 
operator, is similar. To simplify the notation, we write C(v) for Co(v ;  u). 

at v = u. To this end, represent L(w) as 

C(v) = cLm v - a H 2 ( z )  5-1 e - (2u -v )z  d x ,  

where the constant c = u2'T(a)- '  is independent of v. Differentiating C(v) above with 
respect to v at v = u, one has 

C'(u)l,,=,, = C'(u) = c (z - cru-l) U - ~ H ~ ( Z )  xO-' e-uz dz , 

Integrating by parts yields 

(A.25) 

provided H2(R)R" exp(-irR) tends to 0 as R + co. Finally, since H 2 ( z )  is monoton- 
ically increasing in z, we conclude that the integral (A.25) is positive, and consequently, 

0 

Proposition A.4.2 can be extended to the multidimensional gamma distribution, as well 

C'(u) > 0. This fact, and the convexity of C(v), imply that v *  (0) < u. 

as to some other exponential family distributions. For details see [5]. 
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A S  A SIMPLE CE ALGORITHM FOR OPTIMIZING THE PEAKS FUNCTION 

The following Matlab code provides a simple implementation of a CE algorithm to solve 
the peaks function; see Example 8.12 on page 268. 

n = 2; % dimension 
mu = [-3,-31; sigma = 3*ones(l,n); N = 100; eps = 1E-5; rho = 0.1; 

while max(sigma) > eps 
X = randn(N,n)*diag(sigma)+ mu(ones(N,l), : ) ;  
sx= S(X) ; %Compute the performance 
sortSX = sortrows( [X, SXl ,n+l) ; 
Elite = sortSX((l-rho)*N:N,1:n); % 
mu = mean(Elite,l); % 
sigma = std(Elite, 1) ; % 
 mu) ,mu,max(sigma)l % 

end 

elite samples 
take sample mean row-wise 
take sample st.dev. row-wise 
output the result 

function out = S(X) 
out = 3*(1-X(:,1)).-2,*exp(-(X(:,l).-2) - (X(:,2)+1).-2) . . .  

- lO*(X( : ,1)/5 - X( : ,1). -3 - X( : , 2 ) .  -5) . *exp(-X( : ,1) .-2-X(: ,2) . -2) . . . 
- 1/3*exp(-(X(:,l)+l).-2 - X(:,2).-2); 

end 

A.6 DISCRETE-TIME KALMAN FILTER 

Consider the hidden Markov model 

X t  = AXt-1 + € 1 ~  

Y , = B X t + & 2 , ,  t = l , 2  , . . . ,  (A.26) 

where A and B are matrices ( B  does not have to be a square matrix). We adopt the 
notation of Section 5.7.1. The initial state X o  is assumed to be N(p0, C,) distributed. 
The objective is to obtain the filtering pdf f(xt 1 ~ 1 : ~ )  and thepredictive pdf f(zt 1 y1:t-1). 
Observe that the joint pdf of and YITt must be Gaussian, since these random vectors 
are linear transformations of independent standard Gaussian random variables. It follows 
that j ( x t  I y1:t) - N(pt ,  C,) for some mean vector pt and covariance matrix C,. Similarly, 
J(xL 1 y ~ : ~ - l )  - N ( ~ L ,  EL) for some mean vector Gt and covariance matrix 5,. We wish 
to compute pt, f i t ,  Ct and Ct  recursively. The argument goes as follows: by assumption, 
( X t  -1  1 y1: t - l )  - N(p,-1, &I) .  Combining this with the fact that X t  = A Xt-l + € l t  

yields 
( X t  I ~ 1 : t - 1 )  - “Apt-1, ACt-iAT + Ci) . 

In other words, 

- 

(A.27) 

I 

Next, we determine the joint pdf of X t  and Yt given Y1:t-l = yl:t-l. Decomposing Ct 
and C2 as ct = RRT and C2 = QQT, respectively (e.g., via the Cholesky square root 
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method), we can write (see (1.23)) 

where, conditional on yt-1 = y1:~-1 ,  U and V are independent standard normal random 
vectors. The corresponding covariance matrix is 

so that we have 

(note that 2, is symmetric). 

following general result (see Problem A.2 below for a proof): If 
The result (A.28) enables us to find the conditional pdf f(zl  I y t )  with the aid of the 

then 
(X I y = ?I) N (m + s12s&/ - m2), s11 - s12s&sT2) . (A.29) 

Because J(xt 1 y1:t) = J ( z t  1 y 1 : ~ - 1 ,  y t ) ,  an immediate consequenceof (A.28) and (A.29) 
is 

pt = & + CtBT(BCtBT + C2)-’(yt - B,&) , 
Ct = ct - CtBT(BCtBT + C2)-’BCt . 

(A.30) 

Updating formulas (A.27) and (A.30) form the (discrete-time) KalmanJilter. Starting 
with some known p,o and Co, one determines 111 and 51, then j k 1  and C1, and so on. Notice 
that 2, and Ct do not depend on the observations y1, y2, . . . and can therefore be determined 
of-line. The Kalman filter discussed above can be extended in many ways, for example by 
including control variables and time-varying parameter matrices. The nonlinear filtering 
case is often dealt with by linearizing the state and observation equations via a Taylor 
expansion. This leads to an approximative method called the extended Kalmanjlter. 

A.7 BERNOULLI DISRUPTION PROBLEM 

As an example of a finite-statc hidden Markov model, we consider the following Bernoulli 
disruption problem. In Example 6.8 a similar type of “changepoint” problem is discussed 
in relation to the Gibbs sampler. However, the crucial difference is that in the present case 
the detection of the changepoint can be done sequentially. 

Let Y1, Y2,. . . be Bernoulli random variables and let T be a geometrically distributed 
random variable with parameter T .  Conditional upon T the {Yt }  are mutually independent, 
and Yl, Y2, . . . , Y T - ~  all have a success probability a, whereas YT, Yr+l, . . . all have a 
success probability 6. Thus, T is the change or disruption point. Suppose that T cannot 
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be observed, but only { Yt} .  We wish to decide if the disruption has occurred based on the 
outcome ylZt = (yl ,  . . . , y t )  of YlZt = (Yl, .  . . , Y,). An example of the observations is 
depicted in Figure A. 1, where the dark lines indicate the times of successes (Yt = 1). 

20 40 60 80 100 120 

Figure A.l The observations for the disruption problem. 

The situation can be described via the HMM illustrated in Figure A.2. Namely, let 
{ X L ,  t = 0,1,2,, . .} be a Markov chain with state space ( 0 ,  I}, transition matrix 

and initial state X o  = 0. Then the objective is to find P(T 6 t I Yltt = ~ 1 : ~ )  = P ( X L  = 
1 IYt = Y1:t). 

0 1 0 I 

l-a’.,  : a l-b’,, ; b  
4, P ? P  

8--8 1 - r  1 

Figure A.2 The HMM diagram for the disruption problem. 

This can be done efficiently by introducing 

c r t ( j )  = P ( X t  = j ,  Y1:t = Y1:t) ’ 

By conditioning on Xt- l  we have 

c r t ( j )  = C P ( X t  = j ,  xt-1 = i , Y l : t  = Y1:t) 

i 

= - p y x ,  = j , K  = yt I xt-1 = i , Y l : t - l  = Y l : t - l ) Q t - l ( 4  

= C P ( X , = j , Y ,  = ? / t I X t - l  =Z)at-1(2). 

c P(Yt = y(II 1 x(II = j )  P(X1 = j I xt-1 = 2) cr,-l( i)  . 

1 

t 

= 
1 
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In particular, we find the recurrence relation 

at(0) = aoyt (1 - r )a t -~(O)  and at(1) = aly,{rat-1(O) + at-1(1)} 

with 
al l  = b), and initial values 

= P(Y = j I X = z), i , j  E {0,1} (thus, a00 = 1 - a, a01 = a, a10 = 1 - b, 

crl(0) = aY1(l - a)’-Y1(1 - T )  and al(1) = bY’(1 - b) l -y l r .  

In Figure A.3 a plot is given of the probability P ( X t  = 1 = ~ 1 : ~ )  = 
at(l)/(at(l) + at(2)),  as a function of 1, for a test case with a = 0.4, b = 0.6, and 
‘r = 0.01. In this particular case T = 49. We see a dramatic change in the graph after the 
disruption takes effect. 

0 

Figure A.3 The probability P(Xt = 1 I Y1:t = y l : t )  as a function of t .  

A.8 COMPLEXITY OF STOCHASTIC PROGRAMMING PROBLEMS 

Consider the following optimization problem: 

!* = min t(u) = min Ef[H(x;  u)] , 
UEW U€W 

(A.31) 

where it is assumed that X is a random vector with known pdf .f having support X c Rn,  
and H ( X ;  u)  is the sample function depending on X and the decision vector u E Wm. 

As an example, consider a two-stage stochastic programming problem with recourse, 
which is an optimization problem that is divided into two stages. At the first stage, one 
has to make a decision on the basis of some available information. At the second stage, 
after a realization of the uncertain data becomes known, an optimal second-stage decision 
is made. Such a stochastic programming problem can be written in the form (A.3 I) ,  with 
H ( X ;  u) being the optimal value of the second-stage problem. 

We now discuss the issue of how difficult it is to solve a stochastic program of type 
(A.31). We should expect that this problem is at least as difficult as minimizing [(u), 
u E ‘22 in the case where !(u) is given explicitly, say by a closed-form analytic expression 
or, more generally, by an “oracle” capable of computing the values and the derivatives of 
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[(u) at every given point. As far as problems of minimization of [(u), u E 92, with an 
explicitly given objective are concerned, the solvable case is known: this is the convex 
programming case. That is, 92 is a closed convex set and 1 : 92 -+ R is a convex function. 
It is known that generic convex programming problems satisfying mild computability and 
boundedness assumptions can be solved in polynomial time. In contrast to this, typical 
nonconvex problems turn out to be NP-hard. 

We should also stress that a claim that “such and such problem is difficult” relates to 
a generic problem and does not imply that the problem has no solvable particular cases. 
When speaking about conditions under which the stochastic program (A.3 1) is efficiently 
solvable, it makes sense to assume that 92 is a closed convex set and !(.) is convex on 92. 
We gain from a technical viewpoint (and do not lose much from a practical viewpoint) by 
assuming 92 to be bounded. These assumptions, plus mild technical conditions, would be 
sufficient to make (A.31) easy (manageable) if [(u) were given explicitly. However, in 
stochastic programming, it makes no sense to assume that we can compute efficiently the 
expectation in (A.31), thus arriving at an explicit representation of [(u). If this were the 
case, there would be no necessity to treat (A.31) as a stochastic program. 

We argue now that stochastic programming problems of the form (A.3 1) can be solved 
reasonably efficiently by using Monte Carlo sampling techniques, provided that the prob- 
ability distribution of the random data is not “too bad” and certain general conditions are 
met. In this respect, we should explain what we mean by “solving” stochastic programming 
problems. Let us consider, for example, two-stage linear stochastic programming problems 
with recourse. Such problems can be written in the form (A.31) with 

92 = {u : A u  = b, u > 0 )  and H ( X ;  u) = (c ,  u) + Q(X; u) , 

where (c ,  u) is the cost of the first-stage decision and Q(X; u) is the optimal value of the 
second-stage problem: 

min (q,y) subject to Tu + Wy > h . 
Y 30 

(A.32) 

Here, (., .) denotes the inner product. X is a vector whose elements are composed from 
elements of vectors q and h and matrices T and W, which are assumed to be random. 

If we assume that the random data vector X = (q, W, T, h) takes K different values 
(calledscenarios) {Xk, k = 1, .  . . , K } ,  with respective probabilities { p k ,  k = 1 , .  . . , K } ,  
then the obtained two-stage problem can be written as one large linear programming prob- 
lem: 

u > O , y k > O ,  k = l ,  . . . ,  K .  

If the number of scenarios K is not too large, then the above linear programming problem 
(A.33) can be solved accurately in a reasonable period of time. However, even a crude 
discretization of the probability distribution of X typically results in an exponential growth 
of the number of scenarios with the increase of the dimension of X. Suppose, for example, 
that the components of the random vector X are mutually independently distributed, each 
having a small number r of possible realizations. Then the size of the corresponding input 
data grows linearly in n (and T ) ,  while the number of scenarios K = rn grows exponentially. 

We would like to stress that from a practical point of view, it does not make sense to try to 
solve a stochastic programming problem with high precision. A numerical error resulting 
from an inaccurate estimation of the involved probability distributions, modeling errors, 
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and so on, can be far bigger than the optimization error. We argue now that two-stage 
stochastic problems can be solved efficiently with reasonable accuracy, provided that the 
following conditions are met: 

(a) The feasible set % is fixed (deterministic). 

(b) For all u E % and X E X, the objective function II(X; u) is real-valued. 

(c) The considered stochastic programming problem can be solved efficiently (by a de- 
terministic algorithm) if the number of scenarios is not too large. 

When applied to two-stage stochastic programming, the above conditions (a) and (b) mean 
that the recourse is relatively complete and the second-stage problem is bounded from 
below. Note that it is said that the recourse is relatively complete, if for every u E % and 
every possible realization of random data, the second-stage problem is feasible. The above 
condition (c) certainly holds in the case of two-stage linear stochastic programming with 
recourse. 

In order to proceed, let us consider the following Monte Carlo sampling approach. 
Suppose that we can generate an iid random sample X I , .  . . , XN from f(x), and we can 
estimate the expected value function [(u) by the sample average 

(A.34) 

Note that Fdepends on the sample size N and on the generated sample, and in that sense is 
random. Consequently, we approximate the true problem (A.3 1) by the following approx- 
imated one: 

min Z(u) . (A.35) 
U€% 

We refer to (A.35) as the stochastic counterpart or sample average approximation problem. 
The optimal value !? and the set @ of optimal solutions of the stochastic counterpart prob- 
lem (A.35) provide estimates of their true counterparts, e* and %*, of problem (A.31). It 
should be noted that once the sample is generated, ?( u) becomes a deterministic function and 
problem (A.35) becomes a stochastic programmingproblem with N scenarios X I ,  . . . , XN 
taken with equal probabilities 1/N. It also should be mentioned that the stochastic coun- 
terpart method is not an algorithm. One still has to solve the obtained problem (A.35) by 
employing an appropriate (deterministic) algorithm. 

By the law of large numbers (see Theorem 1.10.1) Z(u) converges (point-wise in %) 
with probability 1 to [(u) as N tends to infinity. Therefore, it is reasonable to expect for 
6 and %* to converge to their counterparts of the true problem (A.31) with probability 1 
as N tends to infinity. And indeed, such convergence can be proved under mild regularity 
conditions. However, for a fixed u E 92, convergence of [(u) to [(u) is notoriously slow. 
By the central limit theorem (see Theorem 1.10.2) it is of order ( 3 ( N - ' / 2 ) .  The rate of 
convergence can be improved, sometimes significantly, by variance reduction methods. 
However, using Monte Carlo techniques, one cannot evaluate the expected value l(u) very 
accurately. 

The following analysis is based on the exponential bounds of the large deviations theory. 
Denote by 92' and %€ the sets of &-optimal solutions of the true and stochastic counterpart 
problems, respectively, that is, u E aE iff u E % and l(u) < infu€e  C(u) + E. Note that 
for E = 0 the set %' coincides with the set of the optimal solutions of the true problem. 

h 

A 

h 
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Choose accuracy constants E > 0 and 0 < 6 < E and the confidence (significance) level 
a E (0, 1). Suppose for the moment that the set 9 is finite, although its cardinality 191 
can be very large. Then, using CramCr's large deviations theorem, it can be shown [4] that 
there exists a constant V ( E ,  6) such that 

(A.36) 

guarantees that the probability of the event {$ c 9'} is at least 1 - a. That is, 
for any N bigger than the right-hand side of (A.36), we are guaranteed that any &optimal 
solution of the corresponding stochastic counterpart problem provides an &-optimal solution 
of the true problem with probability at least 1 - a. In other words, solving the stochastic 
counterpart problem with accuracy b guarantees solving the true problem with accuracy E 

with probability at least 1 - a. 
The number V ( E ,  6) in the estimate (A.36) is defined as follows. Consider a mapping 

x : 92 \ gE ---t 9 such that [ ( ~ ( u ) )  < [(u) - E for all u E 9 \ 9'. Such mappings do 
exist, although not uniquely. For example, any mapping 7r : 9 \ 9' ---t 9' satisfies this 
condition. The choice of such a mapping gives a certain flexibility to the corresponding 
estimate of the sample size. For u E 9, consider the random variable 

Y, = H(X; .(U)) - H(X; u) , 

its moment generating function M,(t) = E [etYu], and the large deviations ratefunction 

I,(.) = sup { t z  - In M,(t)}  . 

Note that I,(.) is the conjugate of the function In Mu(.) in the sense of convex analysis. 
Note also that, by construction of mapping x(u), the inequality 

p, = E [Y,] = [(7r(U)) - [(u) < -& 

t €W 

(A.37) 

holds for all u E 9 \ 9'. Finally, we define 

V ( E ,  4 = "czi't*c Ill(-&) . (A.38) 

Because of (A.37) and since 6 < E ,  the number Iu(-6) is positive, provided that the 
probability distribution of Y, is not too bad. Specifically, if we assume that the moment 
generating function M,(t) ,  of Y,, is finite-valued for all t in a neighborhood of 0, then the 
random variable Y, has finite moments and Zu(pu) = I'(pu) = 0, and I"(pU) = l/u; 
where c; = Var [Yu]. Consequently, I,( -6 )  can be approximated by using the second- 
order Taylor expansion, as follows: 

This suggests that one can expect the constant q ( ~ ,  6) to be of order ( E  - 6)'. And indeed, 
this can be ensured by various conditions. Consider the following ones. 

( A l )  There exists a constant u > 0 such that for any u E 9 \ %', the moment generating 
function M:(t)  of the random variable Y, - E [Y,] satisfies 

~ : ( t )  < exp (a2t2/2) ,  t l t  E R . (A.39) 
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Note that the random variable Y, - E [Y,] has zero mean. Moreover, if it has a normal 
distribution, with variance u;, then its moment generating function is equal to the right- 
hand side of (A.39). Condition (A.39) means that the tail probabilities P(IH(X; ~ ( u ) )  - 
H(X;u)I > t )  are bounded from above by O(l)exp(-t2/(2aZ)). Note that by O(1) 
we denote generic absolute constants. This condition certainly holds if the distribution 
of the considered random variable has a bounded support. Condition (A.39) implies that 
M,(t) 6 exp(p,t + a2t2/2). It follows that 

2 ( z  - P u )  Tu(z) b sup { t z  - put - a 2 t 2 / 2 }  = 
1EW 2d2 ' 

and hence, for any E > 0 and 6 E [0, E ) ,  

It follows that, under assumption (Al), the estimate (A.36) can be written as 

(A.40) 

(A.41) 

(A.42) 

Remark A.8.1 Condition (A.39) can be replaced by a more general one, 

h./:(t) 6 exp($(t)), V t  E R ,  (A.43) 

where @ ( t )  is a convex even function with $ ( O )  = 0. Then In n/l,(t) < l L u t  + $ ( t )  and 
hence I , (z)  3 $ * ( z  - p,), where $* is the conjugate of the function @. It follows then 
that 

V ( E ,  6) 3 $*(-6 - P u )  b $ * ( E  - 6) . (A.44) 

For example, instead of assuming that the bound (A.39) holds for all t E R, we can 
assume that it holds for all t in a finite interval [-a, a ] ,  where a > 0 is a given constant. 
That is, we can take $ ( t )  = u2t/2 if It1 6 a and $ ( t )  = +cu otherwise. In that case, 
Ijl*(z) = z2/(2a2) for IzI < ad2 and $ * ( z )  = alzl - a2u2/2 for IzJ > ad2. 

A key feature of the estimate (A.42) is that the required sample size N depends log- 
arithmically both on the size of the feasible set % and on the significance level a. The 
constant u, postulated in assumption (Al ) ,  measures, in some sense, the variability of the 
considered problem. For, say, b = ~ / 2 ,  the right-hand side of the estimate (A.42) is pro- 
portional to ( . / E ) ~ .  For Monte Carlo methods, such dependence on d and E seems to be 
unavoidable. In order to see this, consider a simple case when the feasible set % consists 
ofjust two elements: % = {ul, u2}, with t(u2) - [(ul)  > E > 0. By solving the corre- 
sponding stochastic counterpart problem, we can ensure that u1 is the €-optimal solution if 
i(u2) - F(u1) > 0. If the random variable H ( X ;  u2) - H ( X ;  u1) has a normal distribution 
with mean [ I ,  = !(71,2) - t ( 7 L 1 )  and variance u2, then e(u1) - t ( ~ 1 )  - N(p,, u 2 / N )  and the 
probability of the event {g(u2) -8~1) > 0 )  (that is, of the correct decision) is @ ( p f i / a ) ,  
where @ is the cdf of N(0 , l ) .  We have that @ ( ~ f i / c )  < @ ( p f i / u ) ,  and in order to 
make the probability of the incorrect decision less than a, we have to take the sample size 
N > zf-, a 2 / ~ 2 ,  where z1-, is the (1 - a)-quantile of the standard normal distribution. 
Even if H ( X ;  u2) - H ( X ;  u1) is not normally distributed, the sample size of order a2/c2 
could be justified asymptotically, say by applying the central limit theorem. 

A 
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Let us also consider the following simplificd variant of the estimate (A.42). Suppose 
that: 

(A2) There is a positive constant G such that the random variable Y ,  is bounded in 
absolute value by a constant C for all u E 92 \ %‘. 

Under assumption (A2) we have that for any E > 0 and 6 E [0, €1: 

(A.45) 
(& - S)* 

ILl-6) z W)- , for all u E 92 \ %‘ ~ 

C2 

and hence q ( ~ ,  6) 2 (3(1)(~ - 6)’/C2. Consequently, the bound (A.36) for the sample size 
that is required to solve the true problem with accuracy E > 0 and probability at least 1 - a, 
by solving the stochastic counterpart problem with accuracy 6 = ~ / 2 ,  takes the form 

(A.46) 

Now let C2 be a bounded, not necessarily a finite, subset of R” of diameter 

D =  SUP,,,,^^ 1111’ - u I I  . 

Then for T > 0, we can construct a set QT c % such that for any u E C2 there is u’ E %7 
satisfying llu - u ’ I I  < 7 ,  and = ( ( 3 ( 1 ) D / ~ ) ~ .  

Suppose next that the following condition holds: 

(A3) There exists a constant 0 > 0 such that for  any u‘, u E % the moment generating 
function M,!,,(t), ofrandom variable H(X; u’) - H ( X ;  U) - E[H(X; u’) - H ( X ;  u)], 
satisfies 

~,,,,(t) < exp ( a 2 t 2 / 2 ) ,  ~t E R . (A.47) 

The above assumption (A3) is slightly stronger than assumption (Al ) ,  that is, assumption 
(A3) follows from (Al)  by taking u’ = ~ ( u ) .  Then by (A.42), for E’ > 6, we can estimate 
the corresponding sample size required to solve the reduced optimization problem, obtained 
by replacing C2 with ‘2&, as 

2 0 2  

(E’ - 6 ) 2  
N>- [n (In D - (A.48) 

Suppose further that there exists a function K : X -+ R+ and e > 0 such that 

lII(x; U’) - H(X; U)I 6 K ( X )  llU’ - Ulle (A.49) 

holds for all u’, u E C2 and all X E X. It follows by (A.49) that 

N 

li(u’) - au)l < N-’ IH(X,; u’) - H ( X , ;  u)I < 2 IIu’ - ulle , (A.50) 
3=1 

N where iZ = N - ’  C,=l .(X,). 
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Let us further assume the following: 

(A4) The moment generatingfunction M, ( 1 )  = IE [e‘n(x)] o f ~ ( X )  isfinite-valuedfor all 
t in a neighborhoodof 0. 

It follows then that the expectation L = E[K(X)] is finite, and moreover, by CramCr’s 
large deviations theorem that for any L‘ > L there exists a positive constant P = ,f3(L’) 
such that 

P(Z > L’) < epNP . (A.51) 

Let Ci be a &optimal solution of the stochastic counterpart problem and let ii E %7 be a 
point such that 116 - iill < T .  Let us take N 2 0-l ln(2/a), so that by (A.51) we have 

B (2 > L’) < 4 2  . (A.52) 

Then with probability at least 1 - a / 2 ,  the point ii is a (6 + L’7e)-optimal solution of the 
reduced stochastic counterpart problem. Setting 

7 = [ ( E  - 6)/(2L’)]l’Q , 

we find that with probability at least 1 - a/2,  the point u is an 8-optimal solution of the 
reduced stochastic counterpart problem with E’ = ( E  + 6)/2. Moreover, by taking a sample 
size satisfying (A.48), we find that ii is an ?-optimal solution of the reduced expected-value 
problem with probability at least 1 - a /2 .  It follows that Ci is an &’-optimal solution of the 
stochastic counterpart problem (A.3 1) with probability at least 1 -aand  E” = E’+ LrQ < E .  

We obtain the following estimate 

) + In (%)I V [P-’ In (2/a)]  (A.53) 
N2------[n(lnD+~-~ln- 4 2  2 L’ 

( E  - 6)’ E - 6  

for the sample size, where V denotes the maximum. 
The above result is quite general and does not involve the convexity assumption. The 

estimate (A.53) of the sample size contains various constants and is too conservative for 
practical applications. However, it can be used as an estimate of the complexity of two- 
stage stochastic programming problems. In typical applications (e.g., in the convex case) the 
constant Q = 1, in which case condition (A.49) means that H(X; .) is Lipschitz continuous 
on @ with constant K ( X ) .  Note that there are also some applications where e could be less 
than I .  We obtain the following basic result. 

Theorem A.8.1 Suppose that assumptions (A3) and(A4) holdand@ has afinite diameter 
D. Then for E > 0, 0 < 6 < E and sample size N satisfying (A.53), we are guaranteed 
that any 6-optimal solution of the stochastic counterpart problem is an &-optimal solution 
ofthe true problem with probabiliq at least 1 - a. 

In particular, if we assume that e = 1 and K ( X )  = L for all X E X, that is, H ( X ;  .) 
is Lipschitz continuous on & with constant L independent of X E X, then we can take 
(5 = O(1)DL and remove the term /3-’ ln(2/a) on the right-hand side of (A.53). Further, 
by taking 6 = ~ / 2  we find in that case the following estimate of the sample size (compare 
with estimate (A.46)): 

(A.54) 
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We can write the following simplified version of Theorem A.8.1. 

Theorem A.8.2 Suppose that % has ajinite diameter D and condition (A.49) holds with 
e = 1 and K ( X )  = L for all X E Z. Then with sample size N satisfiing (A.54), we are 
guaranteed that every (~/2)-optimal solution of the stochastic counterpart problem is an 
E-optimalsolution of the true problem with probability at least 1 - a. 

The above estimates of the required sample size suggest complexity of order u 2 / ~ 2  with 
respect to the desirable accuracy. This is in sharp contrast to deterministic (convex) opti- 
mization, where complexity usually is bounded in terms of In(€-'). In view of the above 
discussion, it should not be surprising that (even linear) two-stage stochastic programs usu- 
ally cannot be solved with high accuracy. On the other hand, the estimates (A.53) and 
(A.54) depend linearly on the dimension n of the first-stage decision vector. They also 
depend linearly on ln(a-'). This means that by increasing confidence, say, from 99% to 
99.99%, we need to increase the sample size by a factor of In 100 =: 4.6 at most. This 
also suggests that by using Monte Carlo sampling techniques, one can solve a two-stage 
stochastic program with reasonable accuracy, say with relative accuracy of 1% or 2%, in a 
reasonable time, provided that (a) its variability is not too large, (b) it has relatively complete 
recourse, and (c) the corresponding stochastic counterpart problem can be solved efficiently. 
And indeed, this was verified in numerical experiments with two-stage problems having a 
linear second-stage recourse. Of course, the estimate (A.53) of the sample size is far too 
conservative for the actual calculations. For practical applications, there are techniques that 
allow us to estimate the error of the feasible solution ii for a given sample size N ;  see, for 
example, [6]. 

The above estimates of the sample size are quite general. For convex problems, these 
bounds can be tightened in some cases. That is, suppose that the problem is convex, that is, 
the set @ is convex and functions H(X; .) are convex for all X E X. Suppose further that 
K ( X )  = L,  the set % O ,  of optimal solutions of the true problem, is nonempty and bounded 
and for some T 2 1, c > 0 and a. > 0, the foIlowing growth condition holds: 

e(u) 2 e * +  c [ d i ~ t ( u , % ~ ) ] ' ,  V U  E %" , (A.55) 

where a > 0 and q4 = {u E 92 : e(u) < C' + a }  is the set of a-optimal solutions of the 
true problem. Then for any E E (0, a )  and b E [0, ~ / 2 )  we have the following estimate of 
the required sample size: 

where DLf is the diameter of 9?la. Note that if % O  = {u'} is a singleton, then it follows 
from (A.55) that D i  ,< 2(a/c) ' lr .  

In particular, if T = 1 and 9?lo = {u'} is a singleton, that is, the solution u* is sharp, 
then DLf can be bounded by 4c-I€ and hence we obtain the following estimate: 

N 2 O ( I ) C - ~ L ~  [nln ( o ( 1 ) c - l ~ )  +In  (a- ')] , (A.57) 

which does not depend on E.  That is, in that case, convergence to the exact optimal solution 
u* happens with probability 1 in finite time. 

For T = 2, condition ( A S )  is called the second-order or quadratic growth condition. 
Under the quadratic growth condition, the first term on the right-hand side of (A.56) becomes 
of order c-l L2€-'. 



334 APPENDIX 

PROBLEMS 

A.l Prove (A.8). 

A.2 Let X and Y be Gaussian random vectors, with joint distribution given by 

(;) " 

a) Defining S = C12C,-,', show that 

b) Using the above result, show that for any vectors u and v 

(2 V T ) e - 1 ( : )  = (2 - w T s T -  )c - l (u  - SV) + V T C & ,  

where 2 = ( e l 1  - SC21). 
c) The joint pdf of X and Y is given by 

for some constant c1. Using b), show that the conditional pdf j ( z  I y) is of the 
form 

with ,G = p1 + S(y - 112). and where ~ ( y )  is some function of y (need not be 
specified). This proves that 

Further Reading 

More details on exponential families and their role in statistics may be found in [ l ] .  An 
accessible account of hidden Markov models is [3]. 

The estimate (A.42) of the sample size, for finite feasible set 92, was obtained in [4]. 
For a general discussion of such estimates and extensions to the general case, see [6]. For 
a discussion of the complexity of multistage stochastic programming problems, see, for 
example, [8]. Finite time convergence in cases of sharp optimal solutions is discussed in 
[71. 
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ABBREVIATIONS AND ACRONYMS 

cdf 

CE 

CMC 

CNF 
DEDS 

DESS 

DES 

DNF 
ECM 

FPAUS 

FPRAS 

HMM 

iid 
ITLR 

KKT 

max-cut 

MCMC 
MinxEnt 

cumulative distribution function 

cross-entropy 

crude Monte Carlo 

conjunctive normal form 

discrete-event dynamical system 

discrete-event statical system 

discrete-event simulation 

disjunctive normal form 

exponential change of measure 

fully polynomial almost uniform sampler 

fully polynomial randomized approximation scheme 

hidden Markov model 

independent and identically distributed 

inverse-transform likelihood ratio 

Karush-Kuhn-Tucker 

maximal cut 

Markov chain Monte Carlo 

minimum cross-entropy 
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Pdf 
PERT 

PME 

RSAT 

SAT 

SF 
SIS 

SLR 
TLR 

TSP 

VM 

probability density function (both discrete and continuous) 

program evaluation and review technique 

parametric MinxEnt 

random SAT 

satisfiability (problem) 

score function 

sequential importance sampling 

standard likelihood ratio 

transform likelihood ratio 

traveling salesman problem 

variance minimization 
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>> 
c( 

N 

N - 
V 

V2 

E 
N 

P 

R 
Rn 

ID 

3c 

M 
s 

much greater than 
proportional to 

is distributed according to 

approximately 

V J is the gradient off  

V2 J is the Hessian o f f  

expectation 

set of natural numbers {0,1,. . .} 
probability measure 
the real line = one-dimensional Euclidean space 

n-dimensional Euclidean space 

Kullback-Leibler CE 
Shannon entropy 

mutual information 

score function 
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Ber 

Beta 

Bin 

EXP 

G 
Gamma 

N 
Pareto 

Poi 

U 

Weib 

Bernoulli distribution 

beta distribution 

binomial distribution 

exponential distribution 

geometric distribution 

gamma distribution 

normal or Gaussian distribution 

Pareto distribution 

Poisson distribution 

uniform distribution 

Weibull distribution 

smoothing parameter or acceptance probability 

level parameter 

cumulant function (log of moment generating function) 

rarity parameter 

objective function for CE minimization 

probability density (discrete or continuous) 

importance sampling density 

indicator function of event A 

(natural) logarithm 

sample size 

Big-0 order symbol 

performance function 

i-th order statistic 

nominal reference parameter (vector) 

reference parameter (vector) 

estimated reference parameter 

CE optimal reference parameter 

VM optimal reference parameter 

objective function for VM minimization 

likelihood ratio 

vectors 

random vectors 

sets 
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absorbing state, 21 
acceptance probability, 57, 169 
acceptance-rejection method, 55, 61, 66 
affine transformation, 14 
alias method, 54 
annealing schedule, 189 
antithetic 

estimator, 122 
random variables, 120 

aperiodic state, 21 
arrival rate, 17 
associated stochastic problem, 249 
asymptotic optimality, 28 
asymptotic variance, 104 

Barker’s algorithm, 198 
batch means method, 105. 106, 172 
Bayes’ rule. 2, 181 
Bayesian statistics, 181, 196 
Bernoulli 

approximation, 18, 43 
conditional distribution, 3 16 
disruption problem, 324 
distribution, 5 ,  63 
process, 8, 18 
sequence, 8, 18 

generation, 62, 75 
beta distribution, 5,  77 

bias, 114 
binomial distribution, 3, 5, 8, 16, 64 

generation, 63 
normal approximation to, 16, 64 
Poisson approximation to, 18 

birth and death process, 25, 103 
Boltzmann distribution, 179 
bootstrap method, 11 3 
bottleneck element, 151 
bounded relative error, 28 
Box-Miiller method, 59 
bridge network, 98, 115. 121 
buffer allocation problem, 269 
Burg cross-entropy distance, 32 
bum-in period, 194 

Cauchy distribution, 77 
CE method, 249 
central limit theorem, 15, 100 

change of measure, 132 
change of variable, 149 
change point, 182 
Chebyshev inequality, 7 
Cholesky decomposition, 15, 39, 67, 315 
coin flip experiment, I ,  3, 8, 41, 181, 250, 252 
common random variables, 120 
complement, 1 
complexity theory, 28 
composition method, 54, 77 
computer simulation, 81 
concave function, 35, 37 

for random vectors, 16 
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conditional 
expectation, 8 
Monte Carlo, 119, 125 
pdf, 8 
probability, 2 

Bayesian, 182 
confidence interval, 27, 100, 104, 115, 219, 243 

CONFTRA model, 158 
continuous optimization, 268 
control variable, 123 
convex 

function, 35 
program, 37 
set, 35 

convolution, 127 
cooling scheme, 192 
correlation coefficient. 9, 42 

coupling from the past, 193 
covariance, 9 

multiple, 124 

function, 104, 172, 194 
matrix. 10, I 1, 14, 42, 124 
properties, 9 

Cram&-Rao inequality, 34 
cross-entropy (CE). 3 I ,  I36 

algorithm 
estimation. 238, 239 
optimization, 25 I ,  253 

method, 136, 235 
crude Monte Carlo (CMC), 27, 28, 120, 132 
cumulant function, 3 I8 
cumulative distribution function (cdf), 4 
cut vector, 128 
cycle 

regenerative, 107 

data augmentation, 180 
degeneracy 

degree, 265 
delta method, 233 
detailed balance equations, 23, 168 
dimension matching, 187 
Dirac measure, 249 
direct estimator, 213, 222 
discrete uniform distribution, 5, 75 
discrete-event dynamic system (DEDS), 84 
discrete-event simulation (DES), 81, 87, 201 
discrete-event static system (DESS). 84 
disjoint events, I 
disruption problem, 324 
distinct representatives, 3 1 I 
distribution 

Bernoulli, 5 ,  63, 316 
beta, 5 ,  62, 75, 77 
binomial, 3, 5 .  8, 16. 63, 64 
Boltzmann, 179 
Cauchy. 77 
continuous, 4 

of likelihood ratio estimator, 133, 249 

discrete, 4, 53 
discrete uniform, 5, 75 
empirical, 114 
Erlang, 61 
exponential, 5,  14, 42, 58, 64 
exponential family, 317 
extreme value, 76 
gamma, 5,  14, 42, 60, 62, 77 
geometric, 5, 64 
Laplace, 76 
location-scale, 76 
normal, 5,  14, 42, 59, 67 
Pareto, 5.  76 
Poisson, 5,  17, 64 
shifted exponential, 133 
uniform, 5 ,  51, 68 
Weibull, 5 ,  75 

distributional parameters, 202 
divergence measures, 32 
dominating density, I3 1 
duality, 34. 37 

gap, 37 
strong, 38 
weak, 37 

dynamic simulation, 84, 97, 101 

efficient score, 33 
elite samples, 238 
empirical distribution, I14 
entropy, 29 

conditional. 30 
cross-, 31 
differential, 29 
joint, 29 
maximum, 36 
minimum, 39 
relative, 31 
Shannon, 29 

event, 1 
elementary, 2 
list, 85 
simulation, 85, 87 
time, 85 

expecration, 6 
properties, 9 
vector, 10, 11,  14 

distribution, 5 ,  14, 42, 64 
exponential 

generation, 58 
truncated, 77 

family, 33, 138, 163, 317 
twist, 311, 319 

exponential-time estimator, 28 
extended Kalman filter, 324 
extreme value distribution, 76 

feasible region, 35 
finite support distribution, 139 
Fisher information, 33 
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jointly normal distribution, 14. 42 

Kalman filter, 324 
Karush-Kuhn-Tucker (KKT) conditions, 37, 38 
Kolmogorov’s criterion, 24, 26 
Kullback-Leibler distance, 31 
Kullback-Leibler distance. 136 

function 
C’, 34 
c2, 34 

gamma 
distribution, 5, 14, 42, 62, 77 

function, 5 
generation, 60 

Gaussian distribution, 59 
generalized Markov sampler, 184, 198 
geometric distribution, 5 

GI/G/l queue, 106, 108, 112, 123, 124, 227 
Gibbs sampler, 167, 175-177, 189, 198 
global balance equations, 23, 26 
global minimizer, 35 
gradient, 34, 45, 135 
gradient descent, 212 
gradient estimation, 213 

Hammenley points, 263 
Hammersley-Clifford, 194 
Hastings’ algorithm, 198 
heavy-tail distribution, 244 
Hessian matrix, 34, 35 
hidden Markov model (HMM), 144, 323 
hide-and-seek, 192 
hit-and-mn, 174, 175, 192 
hit-or-miss method, 164 

generation, 64 

importance sampling, 119, 131, 136, 206, 235 
density, 131 

dynamic, 141 
estimator, 132 
sequential, 141 

optimal, 132 

inclusion-exclusion principle, 31 I 
independence, 3 

of events, 3 
of random variables, 8, 9 

independence sampler, 169 
independent and identically distributed (iid), 9 
index set, 7 
initial distribution, 19, 20 
instrumental density, 131, 168 
intersection, 1 
inventory model, 108, 113 
inverse-transform estimator, 213, 223 
inverse-transform method, 51, 58, 65, 75, 76, 

irreducible Markov chain, 21 
king model, 178 

Jacobi matrix, 13 
Jensen’s inequality, 31 
joint 

120, 148 

cdf, 7 
distribution, 7, 1 1  
pdf. 7 

Lagrange 
dual function, 37 
dual program, 37 
function, 36 
method, 36 
multiplier, 36, 130 

distribution, 76 
transform, 13 

Laplace 

large deviations rate function, 329 
law of large numbers, 15, 100 
law of total probability, 2 
likelihood, 32, 239 

Bayesian, 181 
likelihood ratio, 132, 206, 236 

estimator, 132, 236 
limiting distribution, 21, 109 

of Markov chain, 21 
of Markov jump process, 26 

Lindley equation, 117, 123. 124 
linear congruential generator, 50 
linear program, 35, 38 
linear transformation, 1 I 
local balance equations, 23, 26, 73, 168, 197 
local minimizer, 34 
location-scale family, 76 
logarithmic efficiency, 28 

M/M/m queue, 45 
M M I  queue, 26, 101, 103, 106, 116 
majorizing function, 55 
marginal pdf. 7 
Markov chain, 19, 44, 107. 112, 229 

classificarion of states, 20 
generation, 72 
limiting behavior, 21 

Markov chain Monte Carlo (MCMC), 167, 184 
Markov inequality, 7 
Markov jump process, 19, 24, 127 

generation, 73 
limiting behavior, 25 

Markov process, 18, 44, 72 
Markov property, 18, 24 
Matlab, 51 
max-cut problem, 253 

maximum entropy, 36 
maximum likelihood 

with r partitions, 258 

estimate, 32 
estimator, 32, 239 

mean square error, 114 
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memoryless property, 42 
Metropolis-Hastings algorithm. 167-169, 189, 

minimal cut set, 128 
minimal path set, 162 
minimization vs. maximization, 25 1 
minimum CE (MinxEnt), 39, 297 
mixture pdf, 77 
mode. 182 
model, 82 
moment generating function, 318 
Monte Carlo simulation, 82 
multiplicative congruential generator, 50 
multivariate normal distribution, 14 

mutual information, 31 

198 

generation, 67 

natural exponential family, 318 
neighborhood structure, 170 
Neymann x2 goodness-of-fit measure, 32 
node placement, 266 
nominal parameter, 134, 140, 243 
normal distribution, 5 ,  14, 67 

generation, 59 

objective function, 35 
one-step-look-ahead, 286 
optimization, 34 

CE method for, 249 
combinatorial, 249 
constrained, 35 
continuous, 249 
convex, 34 

order statistics, 1 I ,  52 

parallel computing, 84 
parametric MinxEnt (PME), 301 
Pareto distribution, 5, 76 
partition, 2 
partition problem, 259 
Pearson x2 discrepancy measure, 32, 163 
perfect sampling. 192 
performance 

function, 98 
long-run average, 112 
steady-state, 112 

permanent, 3 I 1  
permutation 

counting, 312 
generation, 74 

permutation flow shop problem, 273 
permutation Monte Carlo, 127 
phi-divergence, 32 
Poisson 

disruption problem, 182 
distribution, 5, 17 

generation, 64 
process, 16, 18. 43 

generation, 70 

nonhomogeneous, 71 
zero inflated model, 197 

polynomial-time estimator, 28 
positive definite matrix, 34 
positive semidefinite matrix, 10, 35, 42 
posterior pdf, 181 
Potts model, 178, 179 
predictive pdf, 197 
prior pdf, 181 

improper, 196 
probability, 2 
probability collectives, 275 
probability density, 4 

probability generating function, 13 
probability mass function (pmf). 4 
product rule, 2, 19, 41, 66 
program evaluation and review technique (PERT), 

99. 115 
proposal density, 55,  131, 168 
pseudorandom number, 50 
push-out estimator, 213, 214, 223 

quadratic program, 35 
quantile, 100 
queens problem, 191 
queueing network, 87, 125, 177, 195 

rand (matlab), 51 
random 

function (pdf), 4 

experiment, I 
number generation, 49 
permutation, 74 
sample, 98, 131 

sum. 126 
tour, 75 
variable, 3 

functions of, 10 
vector, 7, 11 

generation, 65 
walk. 19, 22, 44, 72, 143 

on an n-cube, 73 
random walk sampler, 170. 171 
randomized algorithm, 289 
Rao-Blackwellization, 125 
rare event, 27, 236 

probability, 136 
rarity parameter, 239, 253 
ratio estimator, 110, 132 
recurrent state, 21 
reference parameter, 134, 137 
regenerative simulation, 107, 225 
relative error, 27, 28, 101 
relative time variance, I22 
reliability, 98, 115 

renewal process, 70 
repairman problem, 91 

weighted, 132 

variance reduction, 126 
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replication-deletion method, 107 
resampling, I14 
response surface. 206 
retrospective test, 82 
reversibility, 23 
reversible jump sampler, 186 
mot finding, 245 
Rosenbrock function, 273 

sample 
mean, 98 
space, 1 
variance, 100, I 14 

sample average approximation, 212 
sampling 

uniform, 170, 289 
score function (SF), 33, 135 

k-th order, 204 
method, 203 

screening method, 151 
for rare events. 245 

seed, 50 
sensitivity analysis. 201, 203, 225 
sequential importance sampling (SIS), 141 
Shannon entropy, 36 
SIMULA, 90 
simulated annealing, 189, 191 
simulation, 81, 83 

classification, 84 
clock, 85 
discrete-event, 201 
dynamic, 101, 201 
event-oriented, 88, 89, 91 
finite-horizon, 101 
models, 82 
process-oriented, 88, 93 
rare-event, 236 
regenerative, 11 1 
static, 98, 201 
steady-state, 101, 103, 105, 1 I0 

simulation-based optimization, 21 1 
slice sampler, 185 
smoothed updating, 251 
squared coefficient of variation, 27, 28 
standard deviation, 6 
standard likelihood ratio (SLR), 136 
standard normal distribution, 14 
standardization, 14 
state space, 7 
static simulation, 84, 97, 98 
stationary distribution, 103 

of Markov chain, 23 
of Markov jump process, 26 

stationary stochastic process, 23, 103 
steady-state, 101 
stochastic approximation, 212 
stochastic counterpart method, 215 

optimization, 212 
stochastic process. 7, 97 

regenerative, 107 
stationary, 23 

stochastic shortest path, 123, 124, 140, 218, 236, 
243 

stopping criterion, 256, 270 
for CE, 252 

stratified sampling, 129 
structural parameters, 202 
structure function, 98 
sum rule, 2 
Swendsen-Wang algorithm, 180 
system, 82 

systematic sampling, 13 I 

tandem queue, 87 
target pdf, 55 
tilting vector, 134 
time-homogeneous 

state, 97 

Markov chain, 19 
Markov jump process, 24 

random cuts, 255 
random panitions, 260 
TSP, 266 

Laplace, 13 
moment generating function, 3 I8 

trajectory generation 

transform 

transform likelihood ratio mR), 148, 150, 244 
transformation rule, 13 
transient state, 21 
transition 

graph, 19 
matrix, 19 

t-step, 20 
probability, 19 
rate, 24 
rate graph, 25 

traveling salesman problem (TSP), 189, 198, 260 
trust region, 21 1 
twisting parameter, 319 
two-opt, 190 

unbiased estimator, 26 
uniform 

distribution, 5, 51 
over hypersphere, 69 
over simplex, 68 

sampling, 170, 289 
union, 1 
uniqueness property 

of transforms, 13 

variance, 6, 42 
asymptotic, 104 
properties, 9 
reduction, 119 

variance minimization (VM), 132, 253 

waiting time, 117, 123, 124, 227 
weak duality, 37 
Weibull distribution, 5 ,  75 
weighted sample, 132 

estimator, 132 
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